Skip to main content
Log in

Evaluation of the low-level laser therapy application parameters for skin burn treatment in experimental model: a systematic review

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Burn is defined as a traumatic injury of thermal origin, which affects the organic tissue. Low-level laser therapy (LLLT) has gained great prominence as a treatment in this type of injury; however, the application parameters are still controversial in the literature. The aims of this study were to review the literature studies that use LLLT as a treatment in burns conducted in an experimental model, discuss the main parameters used, and highlight the benefits found in order to choose an appropriate therapeutic window to be applied in this type of injury. The selection of the studies related to the theme was carried out in the main databases (PubMed, Cochrane Library, LILACS, Web of Science, and Scopus in the period from 2001 to 2017). Subsequently, the articles were then chosen that fell within the inclusion criteria previously established. In the end, 22 were evaluated, and the main parameters were presented. The analyzed studies presented both LLLT use in continuous and pulsed mode. Differences between the parameters used (power, fluence, and total energy) were observed. In addition, the protocols are distinct as to the type of injury and the number of treatment sessions. Among the results obtained by the authors are the improvements in the local microcirculation and cellular proliferation; however, a study reported no effects with LLLT as a treatment. LLLT is effective in accelerating the healing process. However, there is immense difficulty in establishing the most adequate protocol, due to the great discrepancy found in the applied dosimetry values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Catarino HRC, de Godoy NP, Scharlack NK, Neves LMG, de Gaspi FO, MAM E et al (2015) InGaP 670-nm laser therapy combined with a hydroalcoholic extract of Solidago chilensis Meyen in burn injuries. Lasers Med Sci 30(3):1069–1079

    Article  PubMed  Google Scholar 

  2. De Moraes JM, Eterno De Oliveira Mendonça D, Moura VBL, Oliveira MAP, Afonso CL, Vinaud MC et al (2013) Anti-inflammatory effect of low-intensity laser on the healing of third-degree burn wounds in rats. Lasers Med Sci 28(4):1169–1176

    Article  PubMed  Google Scholar 

  3. Ezzati A, Bayat M, Taheri S, Mohsenifar Z (2009) Low-level laser therapy with pulsed infrared laser accelerates third-degree burn healing process in rats. J Rehabil Res Dev 46(4):543–554

    Article  PubMed  Google Scholar 

  4. Greyce A, Pessolato T, Martins S, Ambro CE, Fla A, Almeida C et al (2011) Propolis and amnion reepithelialise second-degree burns in rats. Burns 37:1–10

    Article  Google Scholar 

  5. Renno ACM, Iwama AM, Shima P, Fernandes KR, Carvalho JG, De Oliveira P et al (2011) Effect of low-level laser therapy (660 nm) on the healing of second-degree skin burns in rats. J Cosmet Laser Ther 13(June):237–242

    Article  PubMed  Google Scholar 

  6. Chiarotto GB, Neves LM, Esquisatto MA, do Amaral ME, dos Santos GM, Mendonça FA (2014) Effects of laser irradiation (670-nm InGaP and 830-nm GaAlAs) on burn of second-degree in rats. Lasers Med Sci 29(5):1685–1693

    Article  PubMed  Google Scholar 

  7. Trajano ETL, da Trajano LA, dos Santos Silva MA, Venter NG, de Porto LC, de Fonseca A et al (2015) Low-level red laser improves healing of second-degree burn when applied during proliferative phase. Lasers Med Sci 30(4):1297–1304

    Article  PubMed  Google Scholar 

  8. Fu L, Zhang Y, Li C, Wu Z, Zhuo Q, Huang X et al (2012) Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. J Mater Chem 22(24):12349

    Article  CAS  Google Scholar 

  9. Fiório FB, Albertini R, Leal-Junior ECP, De Carvalho PDTC (2014) Effect of low-level laser therapy on types i and III collagen and inflammatory cells in rats with induced third-degree burns. Lasers Med Sci 29(1):313–319

    Article  PubMed  Google Scholar 

  10. Brassolatti P, Bossini PS, Oliveira MCD, Kido HW, Tim CR, Almeida-Lopes L et al (2016) Comparative effects of two different doses of low-level laser therapy on wound healing third-degree burns in rats. Microsc Res Tech 79(4):313–320

    Article  PubMed  Google Scholar 

  11. Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25(2):1021–106

  12. Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with HeNe laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B Biol 27(3):219–223

    Article  CAS  Google Scholar 

  13. Meireles GCS, Santos JN, Chagas PO, Moura AP, Pinheiro ALB (2008) Effectiveness of laser photobiomodulation at 660 or 780 nanometers on the repair of third-degree burns in diabetic rats. Photomed Laser Surg 26(1):47–54

    Article  PubMed  Google Scholar 

  14. Núñez SC, França CM, Silva DFT, Nogueira GEC, Prates RA, Ribeiro MS (2013) The influence of red laser irradiation timeline on burn healing in rats. Lasers Med Sci 28(2):633–641

    Article  PubMed  Google Scholar 

  15. de Vasconcelos Catão MHC, Nonaka CFW, de Albuquerque RLC, Bento PM, de Oliveira Costa R (2014) Effects of red laser, infrared, photodynamic therapy, and green LED on the healing process of third-degree burns: clinical and histological study in rats. Lasers Med Sci 30(1):421–428

    Article  PubMed  Google Scholar 

  16. Bayat M, Vasheghani MM, Razavi N, Taheri S, Rakhshan M (2005) Effect of low-level laser therapy on the healing of second-degree burns in rats: a histological and microbiological study. J Photochem Photobiol B Biol 78(2):171–177

    Article  CAS  Google Scholar 

  17. Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N et al (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg [Internet] 32(1):41–52 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4126803&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  18. Ezzati A, Bayat M, Khoshvaghti A (2010) Low-level laser therapy with a pulsed infrared laser accelerates second-degree burn healing in rat: a clinical and microbiologic study. Photomed Laser Surg 28(5):603–611

    Article  PubMed  CAS  Google Scholar 

  19. Karu TI, Pyatibrat LV, Afanasyeva NI (2005) Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med 36(4):307–314

    Article  PubMed  Google Scholar 

  20. Ranjbar R, Ashrafzadeh M, Ii T (2016) The effects of low level laser therapy on Staphylococcus aureus infected third-degree burns in diabetic rats. Acta Cirúrgica Bras 31(314):2016–2251

    Google Scholar 

  21. Furlan A, Pennick V, Bombardier CVTM (2015) Updated method guideline for systematic reviews in the Cochrane back and neck group. Spine (Phila Pa 1976) 40(21):1660–1673

    Article  Google Scholar 

  22. Bayat M, Vasheghani MM, Razavie N, Jalili MR (2008) Effects of low-level laser therapy on mast cell number and degranulation in third-degree burns of rats. J Rehabil Res Dev 45(6):931–938

    Article  PubMed  Google Scholar 

  23. de Fátima Teixeira da Silva D, de Campos Vidal B, Zezell DM, Zorn TMT, Núñez SC, Ribeiro MS (2006) Collagen birefringence in skin repair in response to red polarized-laser therapy. J Biomed Opt [Internet] 11(2):24002 Available from: http://biomedicaloptics.spiedigitallibrary.org/article.aspx?doi=10.1117/1.2187418

    Article  Google Scholar 

  24. Bayat M (2006) Effect of low-level helium—neon laser therapy on the healing of third-degree burns in rats. J Photochem Photobiol B 83:87–93

    Article  PubMed  CAS  Google Scholar 

  25. Silveira PCL, Streck EL, Pinho RA (2007) Evaluation of mitochondrial respiratory chain activity in wound healing by low-level laser therapy. J Photochem Photobiol B Biol 86(3):279–282

    Article  CAS  Google Scholar 

  26. Khoshvaghti A, Zibamanzarmofrad M, Bayat M (2011) Effect of low-level treatment with an 80-Hz pulsed infrared diode laser on mast-cell numbers and degranulation in a rat model of third-degree burn. Photomed Laser Surg [Internet] 29(9):597–604 Available from: http://www.liebertonline.com/doi/abs/10.1089/pho.2010.2783

    Article  Google Scholar 

  27. Yadav A, Gupta A, Keshri GK, Verma S, Sharma SK, Singh SB (2016) Photobiomodulatory effects of superpulsed 904 nm laser therapy on bioenergetics status in burn wound healing. J Photochem Photobiol B Biol [Internet] 162:77–85. https://doi.org/10.1016/j.jphotobiol.2016.06.031

    Article  CAS  Google Scholar 

  28. Karu T (2010) Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP. Photomed Laser Surg 28(2):159–160

    Article  PubMed  CAS  Google Scholar 

  29. Gupta A, Keshri GK, Yadav A, Gola S, Chauhan S, Salhan AK et al (2015) Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. J Biophotonics 8(6):489–501

    Article  PubMed  CAS  Google Scholar 

  30. Oliveira PC, Meireles GCS, dos Santos NR, de Carvalho CM, de Souza APC, dos Santos JN et al (2008) The use of light photobiomodulation on the treatment of second-degree burns: a histological study of a rodent model. Photomed Laser Surg 26(4):289–299

    Article  PubMed  Google Scholar 

  31. Hashmi JT, Huang YY, Sharma SK, Kurup DB, De Taboada L, Carroll JD et al (2010) Effect of pulsing in low-level light therapy. Lasers Surg Med 42(6):450–466

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rathnakar B, Rao BSS, Prabhu V, Chandra S, Rai S, Rao ACK et al (2016) Photo-biomodulatory response of low-power laser irradiation on burn tissue repair in mice. Lasers Med Sci [Internet] 31(9):1741–1750. https://doi.org/10.1007/s10103-016-2044-2

    Article  Google Scholar 

  33. Medrado ARAP, Pugliese LS, Reis SRA, Andrade ZA (2003) Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg Med [Internet] 32(3):239–244 Available from: http://doi.wiley.com/10.1002/lsm.10126

    Article  Google Scholar 

  34. Gonçalves RV, Novaes RD, Do Carmo Cupertino M, Moraes B, JPV L, Do Carmo Gouveia Peluzio M et al (2013) Time-dependent effects of low-level laser therapy on the morphology and oxidative response in the skin wound healing in rats. Lasers Med Sci. 28(2):383–390

    Article  PubMed  Google Scholar 

  35. Vasheghani MM, Bayat M, Rezaei F, Bayat A, Karimipour M (2008) Effect of low-level laser therapy on mast cells in second-degree burns in rats. Photomed Laser Surg 26(1):1–5

    Article  PubMed  Google Scholar 

  36. Beukelman CJ, van den Berg AJJ, Hoekstra MJ, Uhl R, Reimer K, Mueller S (2008) Anti-inflammatory properties of a liposomal hydrogel with povidone-iodine (Repithel®) for wound healing in vitro. Burns 34(6):845–855

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

We thank the Coordination for the Improvement of Higher Level Education (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Brassolatti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brassolatti, P., de Andrade, A.L.M., Bossini, P.S. et al. Evaluation of the low-level laser therapy application parameters for skin burn treatment in experimental model: a systematic review. Lasers Med Sci 33, 1159–1169 (2018). https://doi.org/10.1007/s10103-018-2526-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2526-5

Keywords

Navigation