EULER'S NUMBER e IS IRRATIONAL

LEO GOLDMAKHER

Abstract. I give two quick proofs that e is irrational. The first (using Taylor series) is folklore; the second (using isolated points) was shown to me by Trevor Wooley.

The goal of this note is to give two quick proofs of the following result:
Theorem. $e \notin \mathbb{Q}$.

PROOF 1: TAYLOR SERIES.

Suppose $e \in \mathbb{Q}$, say, $e=\frac{a}{N}$ for some whole numbers a and N. From the Taylor expansion (around 0) of e^{x}, we have

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{(N-1)!}+\frac{1}{N!}+\frac{1}{(N+1)!}+\frac{1}{(N+2)!}+\cdots
$$

It follows that

$$
e \cdot N!=\underbrace{N!+N!+\frac{N!}{2!}+\cdots+N+1}_{\in \mathbb{Z}}+\underbrace{\frac{1}{N+1}+\frac{1}{(N+1)(N+2)}+\cdots}_{\in(0,1)}
$$

Since the left hand side is an integer while the right hand side is not, we have reached a contradiction.

PROOF 2: ISOLATED POINTS.

Recall that an isolated point of a set is a point which is far away from any other point in the set. More precisely, given a set $S \subseteq \mathbb{R}$, we say p is isolated in S iff there exists a nonempty open interval I such that $I \cap S=\{p\}$. Our proof of the irrationality of e will hinge on the following nice property of rationals.
Exercise 1. Prove: If $\alpha \in \mathbb{Q}$, then 0 is an isolated point in $\mathbb{Z}+\mathbb{Z} \alpha$. (Here $\mathbb{Z}+\mathbb{Z} \alpha:=\{x+y \alpha: x, y \in \mathbb{Z}\}$.)
Now consider the function $F(n):=\int_{0}^{1} x^{n} e^{x} d x$.
Exercise 2. Let $F(\mathbb{N}):=\{F(n): n \in \mathbb{N}\}$. Prove that $F(\mathbb{N}) \subseteq \mathbb{Z}+\mathbb{Z} e$.
Exercise 3. Prove that 0 isn't isolated inside $\mathbb{Z}+\mathbb{Z} e$. [Hint: Consider $\lim _{n \rightarrow \infty} F(n)$.]
Combining this with Exercise 1 yields the theorem.
Remark. Exercise 1 exhibits a property all rational numbers enjoy but which doesn't hold for e. In fact, this property fails to hold for every irrational, and therefore can be viewed as a characterization of rational numbers.

Exercise 4. Prove that $\alpha \in \mathbb{Q}$ if and only if 0 is an isolated point in $\mathbb{Z}+\mathbb{Z} \alpha$.
Question. Can these proofs be adapted to show that $e^{2} \notin \mathbb{Q}$? or $e^{3} \notin \mathbb{Q}$? I'd love to hear your thoughts!

Dept of Mathematics \& Statistics, Williams College, Williamstown, MA, USA
E-mail address: leo.goldmakher@williams.edu

