Skip to main content
Log in

A novel synthetic route for high-index faceted iron oxide concave nanocubes with high T2 relaxivity for in vivo MRI applications

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles (IONPs) with high-index facets have shown great potential as high performance T2 contrast agents for MRI. Previous synthetic approaches focused mainly on ion-directed or oxidative etching methods. Herein, we report a new synthetic route for preparing high-index faceted iron oxide concave nanocubes using a bulky coordinating solvent. Through the systematic replacement of a non-coordinating solvent, 1-octadecene, with trioctylamine, the solvent interaction with the nanoparticle surface is modified, thereby, promoting the growth evolution of the IONPs from spherical to concave cubic morphology. The presence of the bulky trioctylamine solvent results in particle size increase and the formation of nanoparticles with enhanced shape anisotropy. A well-defined concave nanocube structure was evident from the early stages of particle growth, further confirming the important role of bulky coordinating solvents in nanoparticle structural development. The unique concave nanocube morphology has a direct influence on the magnetic properties of the IONPs, ultimately leading to an ultra-high T2 relaxivity (862.2 mM−1 s−1), and a 2-fold enhancement in T2*-weighted in vivo MRI contrast compared to spherical IONP analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee N, Choi Y, Lee Y, Park M, Moon WK, Choi SH, Hyeon T. Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett. 2012;12:3127–31.

    Article  CAS  Google Scholar 

  2. Lee N, Hyeon T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev. 2012;41:2575–89.

    Article  CAS  Google Scholar 

  3. Todd T, Zhen Z, Tang W, Chen H, Wang G, Chuang YJ, Deaton K, Pan Z, Xie J. Iron oxide nanoparticle encapsulated diatoms for magnetic delivery of small molecules to tumors. Nanoscale. 2014;6:2073–6.

    Article  CAS  Google Scholar 

  4. Huang J, Wang L, Zhong X, Li Y, Yang L, Mao H. Facile non-hydrothermal synthesis of oligosaccharide coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effects. J Mater Chem B. 2014;2:5344–51.

    Article  CAS  Google Scholar 

  5. Yoo D, Lee JH, Shin TH, Cheon J. Theranostic magnetic nanoparticles. Acc Chem Res. 2011;44:863–74.

    Article  CAS  Google Scholar 

  6. Zhao Z, Zhou Z, Bao J, Wang Z, Hu J, Chi X, Ni K, Wang R, Chen X, Chen Z, Gao J. Octapod Iron oxide nanoparticles as high performance T2 contrast agents for magnetic resonance imaging. Nat Commun. 2013;4:2266.

    Article  Google Scholar 

  7. Smolensky ED, Park HYE, Zhou Y, Rolla GA, Marjańska M, Botta M, Pierre VC. Scaling laws at the nanosize: the effect of particle size and shape on the magnetism and relaxivity of iron oxide nanoparticle contrast agents. J Mater Chem B. 2013;1:2818–28.

    Article  CAS  Google Scholar 

  8. Roch A, Muller RN, Gillis P. Theory of proton relaxation induced by superparamagnetic particles. J Chem Phys. 1999;110:5403–11.

    Article  CAS  Google Scholar 

  9. Zhou Z, Zhu X, Wu D, Chen Q, Huang D, Sun C, Xin J, Ni K, Gao J. Anisotropic shaped iron oxide nanostructures: controlled synthesis and proton relaxation shortening effects. Chem Mater. 2015;27:3505–15.

    Article  CAS  Google Scholar 

  10. Situ SF, Samia ACS. Highly efficient antibacterial iron oxide@carbon nanochains from wüstite precursor nanoparticles. ACS Appl Mater Interfaces. 2014;6:20154–63.

    Article  CAS  Google Scholar 

  11. Redl FX, Black CT, Papaefthymiou GC, Sandstrom RL, Yin M, Zeng H, Murray CB, O’Brien SP. Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J Am Chem Soc. 2004;126:14583–99.

    Article  CAS  Google Scholar 

  12. Park J, An KJ, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater. 2004;3:891–5.

    Article  CAS  Google Scholar 

  13. Jun YW, Choi JS, Cheon J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Ed. 2006;45:3414–39.

    Article  CAS  Google Scholar 

  14. Mohanty A, Garg N, Jin R. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew Chem Int Ed. 2010;49:4962–6.

    Article  CAS  Google Scholar 

  15. Zeng H, Rice PM, Wang SX, Sun S. Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. J Am Chem Soc. 2004;126:11458–9.

    Article  CAS  Google Scholar 

  16. Liang H, Jiang X, Qi Z, Chen W, Wu Z, Xu B, Wang Z, Mi J, Li Q. Hematite concave nanocubes and their superior catalytic activity for low temperature CO oxidation. Nanoscale . 2014;6:7199–203.

    Article  CAS  Google Scholar 

  17. Hofmann C, Rusakova I, Ould-Ely T, Prieto-Centurión D, Hartman KB, Kelly AT, Lüttge A, Whitmire KH. Shape control of new FexO–Fe3O4 and Fe1–yMnyO–Fe3–zMnzO4 nanostructures. Adv Funct Mater. 2008;18:1661–7.

    Article  CAS  Google Scholar 

  18. Bao L, Low WL, Jiang J, Ying JY. Colloidal synthesis of magnetic nanorods with tunable aspect ratios. J Mater Chem. 2012;22:7117–20.

    Article  CAS  Google Scholar 

  19. Jin M, Zhang H, Xie Z, Xia Y. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew Chem Int Ed. 2011;50:7850–4.

    Article  CAS  Google Scholar 

  20. Shao Z, Zhu W, Wang H, Yang Q, Yang S, Liu X, Wang G. Controllable synthesis of concave nanocubes, right bipyramids, and 5-fold twinned nanorods of palladium and their enhanced electrocatalytic performance. J Phys Chem C. 2013;117:14289–94.

    Article  CAS  Google Scholar 

  21. Lee PY, Teng HS, Yeh CS. Preparation of superparamagnetic MnxFe1-xO nanoparticles from low-index-facet cubes to high-index-facet concave structures and their catalytic performance in aqueous solution. Nanoscale. 2013;5:7558–63.

    Article  CAS  Google Scholar 

  22. Kovalenko MV, Bodnarchuk MI, Lechner RT, Hesser G, Schäffler F, Heiss W. Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J Am Chem Soc. 2007;129:6352–3.

    Article  CAS  Google Scholar 

  23. Macher T, Totenhagen J, Sherwood J, Qin Y, Gurler D, Bolding MS, Bao Y. Ultrathin iron oxide nanowhiskers as positive contrast agents for magnetic resonance imaging. Adv Funct Mater. 2015;25:490–4.

    Article  CAS  Google Scholar 

  24. Cozzoli PD, Snoeck E, Garcia MA, Giannini C, Guagliardi A, Cervellino A, Gozzo F, Hernando A, Achterhold K, Ciobanu N, Parak FG, Cingolani R, Manna L. Colloidal synthesis and characterization of tetrapod-shaped magnetic nanocrystals. Nano Lett. 2006;6:1966–72.

    Article  CAS  Google Scholar 

  25. Li Z, Ma Y, Qi L. Controlled synthesis of MnxFe1−xO concave nanocubes and highly branched cubic mesocrystals. CrystEngComm . 2014;16:600–8.

    Article  CAS  Google Scholar 

  26. Palchoudhury S, Xu Y, Rushdi A, Holler RA, Bao Y. Controlled synthesis of iron oxide nanoplates and nanoflowers. Chem Commun. 2012;48:10499–501.

    Article  CAS  Google Scholar 

  27. Douglas FJ, MacLaren DA, Tuna F, Holmes WM, Berry CC, Murrie M. Formation of octapod MnO nanoparticles with enhanced magnetic properties through kinetically controlled thermal decomposition of polynuclear manganese complexes. Nanoscale. 2014;6:172–6.

    Article  CAS  Google Scholar 

  28. Liao HG, Zherebetskyy D, Xin H, Czarnik C, Ercius P, Elmlund H, Pan M, Wang LW, Zheng H. Facet development during platinum nanocube growth. Science. 2014;345:916–9.

    Article  CAS  Google Scholar 

  29. Bronstein LM, Huang X, Retrum J, Schmucker A, Pink M, Stein BD, Dragnea B. Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chem Mater. 2007;19:3624–32.

    Article  CAS  Google Scholar 

  30. Ding X, Bao L, Jiang J, Gu H. Colloidal synthesis of ultrathin γ-Fe2O3 nanoplates. RSC Adv. 2014;4:9314–20.

    Article  CAS  Google Scholar 

  31. Samia AC, Schlueter JA, Jiang JS, Bader SD, Qin CJ, Lin XM. Effect of ligand− metal interactions on the growth of transition-metal and alloy nanoparticles. Chem Mater. 2006;18:5203–12.

    Article  CAS  Google Scholar 

  32. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, Part B: Applications in coordination, organometallic, and bioinorganic chemistry. 2nd edn. New York: Wiley; 2009.

    Google Scholar 

  33. Lu Y, Miller JD. Carboxyl stretching vibrations of spontaneously adsorbed and LB-transferred calcium carboxylates as determined by FTIR internal reflection spectroscopy. J Colloid Interface Sci. 2002;256:41–52.

    Article  CAS  Google Scholar 

  34. Tandon P, Förster G, Neubert R, Wartewig S. Phase transitions in oleic acid as studied by X-ray diffraction and FT-Raman spectroscopy. J Mol Struct. 2000;524:201–15.

    Article  CAS  Google Scholar 

  35. Hufschmid R, Hamed A, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnan KM. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale. 2015;7:11142–54.

    Article  CAS  Google Scholar 

  36. Wang YXJ. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1:35–40.

    Google Scholar 

  37. Yu WW, Xiaogang P. Formation of high‐quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew Chem Int Ed. 2002;41:2368–71.

    Article  CAS  Google Scholar 

  38. Huang X, Zhao Z, Fan J, Tan Y, Zheng N. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J Am Chem Soc. 2011;133:4718–21.

    Article  CAS  Google Scholar 

  39. Qiao L, Fu Z, Li J, Ghosen J, Zeng M, Stebbins J, Prasad PN, Swihart MT. Standardizing size-and shape-controlled synthesis of monodisperse magnetite (Fe3O4) nanocrystals by identifying and exploiting effects of organic impurities. ACS Nano. 2017;11:6370–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a NSF-CAREER Grant (DMR-1253358) from the Solid State and Materials Chemistry Program. Tilting TEM and SAED analyses on the concave nanocubes were performed with assistance from SCSAM at CWRU. The HRTEM data was obtained at the TEM facility at the Liquid Crystal Institute, Kent State University, supported by the Ohio Research Scholars Program Research Cluster on Surfaces in Advanced Materials. The authors thank the technical support of Dr. Min Gao for the HRTEM measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Cristina S. Samia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Situ-Loewenstein, S.F., Wickramasinghe, S., Abenojar, E.C. et al. A novel synthetic route for high-index faceted iron oxide concave nanocubes with high T2 relaxivity for in vivo MRI applications. J Mater Sci: Mater Med 29, 58 (2018). https://doi.org/10.1007/s10856-018-6052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6052-6

Navigation