Environment

How biodiversity loss is quietly eroding the potential for life-saving drug discovery

How biodiversity loss is quietly eroding the potential for life-saving drug discovery
The Amazon rainforest in Brazil is home to a multitude of species, which could be sources of new medicines – if they survive
The Amazon rainforest in Brazil is home to a multitude of species, which could be sources of new medicines – if they survive
View 3 Images
A compound found in the venom of the Australian funnel-web spider was found to kill off melanoma cells in the lab
1/3
A compound found in the venom of the Australian funnel-web spider was found to kill off melanoma cells in the lab
The gila monster lizard was found to contain a vital compound for fighting diabetes
2/3
The gila monster lizard was found to contain a vital compound for fighting diabetes
The Amazon rainforest in Brazil is home to a multitude of species, which could be sources of new medicines – if they survive
3/3
The Amazon rainforest in Brazil is home to a multitude of species, which could be sources of new medicines – if they survive
View gallery - 3 images

Even our ancient ancestors had medicines to turn to when they felt under the weather. The Egyptians, for example, would strip the leaves and bark from willow trees to ease their aching joints. Drawing on nature to cure ailments stretches back further than this, but with our destruction of the environment continuing apace some are concerned how much of it we'll have to depend on in the future.

The reason the Egyptians kept turning to the willow tree for healing was because of an active ingredient within it called salicylic acid, later noted by the Greek physician Hippocrates for its ability to relieve fevers and pain. Fast forward two or three thousand years and humans still rely on salicylic acid to make themselves feel better, but in the form of a synthetic adaptation called acetylsalicylic acid, better known as aspirin.

Modern science gives us the ability to tweak the chemistry of compounds like this in search of more powerful drugs, and even build them from scratch, but nature continues to be a huge source of drug discovery. In fact, the World Wildlife Fund says that of all small molecule drugs introduced in the last 25 years, at least 70 percent were derived natural sources.

Many come from plants, fungi and bacteria, but the animal kingdom also has a part to play. Within the last year alone, we've found a compound in the venom of the funnel-web spider that ruthlessly killed off skin cancer cells in the lab, an antibiotic candidate in rattlesnake venom that could prove vital in the fight against superbugs, and learned lessons in pest control from a parasitic vine. Just last week, scientists discovered a compound in a rare moss called liverwort with hugely promising anti-inflammatory properties.

A compound found in the venom of the Australian funnel-web spider was found to kill off melanoma cells in the lab
A compound found in the venom of the Australian funnel-web spider was found to kill off melanoma cells in the lab

Then there's the great potential of insects, which creep and crawl over every kind of terrain on the planet and could teach us how to build better hearing aids or cure Parkinson's disease. And mussels, with a tendency to bind to underwater surfaces that can inspire advanced surgical glues, and the ability of porcupine quills to easily penetrate a victim's skin, inspiring research into new kinds of hypodermic needles.

You get the idea.

Thank you and goodbye

This week the World Wildlife Fund (WWF) released its Living Planet report, an assessment of humanity's impact on the health of the Earth. The most striking figures relate to a remarkable decline in global wildlife populations over the past four decades. Human activity, driven largely by a growing demand for energy and food, has wiped out 60 percent of all mammals, birds, fish and reptiles since 1970.

Scientists contend that we are in the midst of a mass extinction event, the sixth in our planet's history, only this time around it is us, homo sapiens, that is to blame. Because we don't know how many million species are out there, it is difficult to calculate how many go extinct each year, but experts say the rate of loss is between 1,000 and 10,000 times higher than it would be if humans weren't around.

Consider this. In 1980 scientists studying a set of 19 trees in Panama were surprised to discover 1,200 different beetle species living within them, 80 percent of which were previously unknown to science. Meanwhile, we've chopped down 20 percent of the Amazon in the last 30 years.

Simon Elsässer is a research fellow in the Department of Medical Biochemistry and Biophysics at Sweden's Karolinska Institutet, and last year co-authored an article in the Journal of Global Health outlining the threats brought on by diminishing biodiversity. He says that, while the loss of animal species described in the WWF report is "alarming," it is only a taste of what we're really losing out on through environmental degradation.

"For each thousand of animal and plant species well-assessed to date, there are millions of single-cell organisms populating our planet, from the deepest sea to the highest mountain," he tells New Atlas. "We have not even a rough estimate of the diversity that lies in these simple but important organisms, and we must assume it is in extremely rapid decline given the widespread severe pollution of water and air."

Of all the global health problems we face heading into the future, antibiotic resistance is as big as they come. This refers to the ability for bacteria to evolve resistance to our very best antibiotics, effectively rendering them useless. Some experts worry that if no action is taken, superbugs could kill 10 million people a year by 2050, in essence returning us to the dark ages of medicine. For Elsässer, the looming threat of superbugs is reason enough to protect our bounty of yet-to-be-discovered natural molecules.

"We absolutely rely on the ingenuity of millions of years of evolution manifested in the millions of small organisms that coexist and compete with each other," says Elsässer. "Only a systematic research in the molecular biodiversity of our planet will provide us with new drug families that may be able to avoid an antibiotic resistance crisis."

Dr Ross Piper is an author, zoologist, BBC wildlife presenter and research fellow at the UK's Royal Geographical Society. He writes of a hormone in the saliva of a venomous lizard called the gila monster, which produces insulin to keep the animal's blood glucose levels in check.

The gila monster lizard was found to contain a vital compound for fighting diabetes
The gila monster lizard was found to contain a vital compound for fighting diabetes

A synthetic version of this hormone called exenatide is now used to treat type 2 diabetes and hauled in US$767 million worth of sales in 2014. The gila monster, meanwhile, is classified as near-threatened as a result of climate change and habitat loss stemming from real estate development in the American southwest. No money from the sale of exenatide has made its way back to the conservation of the species.

There are countless examples of how nature can contribute to the health and well-being of humans, but how many gila monsters, willow trees and liverwort mosses will we lose before we even get a chance to know them? Backed by millions of years of evolutional problem-solving, nature holds in front of us a molecular catalog that we're yet to even start turning the pages on – but we're tearing them out and burning them to keep warm instead.

"We've barely scraped the surface because there are so many species out there, probably billions of species alone," Piper tells New Atlas. "Historically it's been very difficult to obtain sufficient quantities of the material to allow characterization, and we have the arrogance to assume that combinatorial chemistry can do better than more than three billion years of evolution."

Safeguarding the future?

All of this paints a disconcerting picture of how rapid diversity loss is depleting our future stocks of life-saving medicines. Technology and science is improving all the time, but the way things are going we simply won't have the same pool of resources to draw inspiration from, or the same variety of natural mechanisms to study in our efforts to overcome illness and disease.

Unsurprisingly, scientists like Piper and Elsässer argue for greater efforts to protect biodiversity, through more funding for research programs that return money to human communities in biodiversity hotspots, in effect encouraging a sustainable relationship between us and particularly vital swathes of the Earth.

"We believe that the public, policy makers and entrepreneurs have to realize the enormous societal costs associated with rapid loss of biodiversity," says Elsässer. "We must acknowledge that climate change, global loss of diversity and the antibiotic resistance crisis are not three isolated risks, but, in fact, are symptoms of the same global problem, the irresponsible and unsustainable exploitation of natural resources."

In the view of Piper, nothing short of a dramatic rethink on how we approach things like food will really be effective in solving the problem of biodiversity loss.

"The biosphere is in a lot of trouble," he says. "The evidence is everywhere, from precipitous declines in insect diversity to enormous coral-bleaching events. In the short term we must end industrial agriculture and the enormous inputs of fertilizers and pesticides it requires. This will require breaking the grip of the agro-chemical companies. We need to create huge protected zones in the ocean that are completely off-limits to fishing and mining. In the medium term we need to drastically reduce our consumption of meat. In particular, beef production is a woefully inefficient use of land and causes huge amounts of habitat loss. Likewise, the soya production to feed all of these domesticated animals is a huge issue."

There are many threads tying the well-being of the environment to that of the human species, from the preservation of freshwater supplies, to the maintenance of fertile soil, to the carbon-sucking and air cleansing capabilities of forests. But is there a more explicit connection with environmental destruction and our own mortality than destroying the massive stores of medicines that might one day save our lives?

View gallery - 3 images
7 comments
7 comments
ljaques
I'll preface this with the info that I stopped donating to WWF 25 years ago when I found that their actions were not in line with their words, nor have I seen that change. I don't trust their report, as it seems more likely it's only made to spread fear and encourage donations to their org. But I'm totally onboard with cleaning up our human act together.
I am truly surprised that nations haven't gotten together to create and ship topsoil/compost to the Amazon area to keep farmers where they are instead of burning down miles of rainforest for a single year of soil life. I have never heard "green" collectives suggesting or doing this, either. Why is that? I'm sure the Brazilian gov't would support it. (They take an awful lot of crap for allowing the slash and burn.)
And encouraged (or mandated) crop rotation would severely lower the need for pesticides and fertilizers in farming. Ban Roundup-ready seed production, period. Crap like this encourages our bodies to break. We must stop our gov't from paying farmers NOT to grow crops. Slightly lower output from rotation would equalize and more farmers could make a living. (So sorry, Big Ag.)
I'd love to see gov'ts mandate (and ENFORCE) replacement-level childbearing laws, like China. Smaller population, smaller abuse of the land.
Nix fracking anywhere near groundwater to save our freshwater systems. Stop poisoning our aquifers!
Aross
Until politicians like D. Trump and others who think global warming is just a temporary blip and Business executives who are more interested in personal wealth than the health of our planet, nothing will change.
Don Duncan
Piper is correct about the feeding of grain to cattle. It's not energy efficient nor does it produce healthy meat. He is wrong about the solution, reducing the consumption of meat. Grass-fed animals are a more efficient use of solar for food than plants. This was not understood until recently. Another recent discovery is pasture management, e.g., rotational grazing, multi-animal grazing. Over the last 3-4 decades, progressive thinking farmers have developed more natural management techniques that require no fertilizers or chemicals, reducing input cost and creating a constantly increasing soil fertility which produces healthier food, higher yields per acre, and greater profit. It's a win-win for consumer and farmer with the big corps cut out of the loop.
EZ
It's not "US" to blame. It's corporate greed that is to blame. When you then consider that most are run by psychopaths that couldn't care less about normal people. I get tired of hearing it's "Us" to blame. BS! We need to change corporate structuring laws so that the boards of directors as well as regular shareholders reap the blame and consequences as well as the rewards. They certainly aren't doing it on their own.
Skyler Thomas
Another great threat to the future of medications is the loss of indigenous cultures. The history of medical discoveries in natural sources has come out of the accumulated wisdom of countless generations of indigenous people. Their use of raw medicinals has informed the investigation of many potential pharmaceuticals. In the same way that we have only scratched the surface of natural medicinal sources, we have also only scratched the surface of investigating materia used in indigenous medicine. Loss of indigenous cultures seems to be an even less visible subject than biodiversity loss, and yet they are linked by the forces threatening them. They should be part of the same discussion when considering the loss of potential medicine.
jgb
Yeah, All progress is bad, let's just go back to the good old pre fossil fuel days where people were lucky to live to 45 years of age.
Nelson Hyde Chick
Trying to save this planet's biodiversity while humanity is allowed to grow by billions is just pissing into the wind. By the time humanity is approaching ten billion the only life on the planet will be us humans, the species we exploit and the pests we can't eradicate. Go anthropocene!!!