The Aimbot V3 Aims To Track & Terminate You

Some projects we cover are simple, while some descend into the sort of obsessive, rabbit-hole-digging-into-wonderland madness that hackers everywhere will recognize. That’s precisely where [Excessive Overload] has gone with the AimBot V3, a target-tracking BB-gun that uses three cameras, two industrial servos, and an indeterminate amount of computing power to track objects and fire up to 40 BB gun pellets a second at them.

The whole project is overkill, made of CNC-machined metal, epoxy-cast gears, and a chain-driven pan-tilt system that looks like it would take off a finger or two before you even get to the shooty bit. That’s driven by input from the three cameras: a wide-angle one that finds the target and a stereo pair that zooms in on the target and determines the distance from the gun, using several hundred frames per second of video. This is then used to aim the BB gun stock, a Polarstar mechanism that fires up to 40 pellets a second. That’s fed by a customized feeder that uses spring wire.

The whole thing comes together to form a huge gun that will automatically track the target. It even uses motion tracking to discern between a static object like a person and a dart fired by a toy gun, picking the dart out of the air at least some of the time.

The downside is that it only works on targets with a retroreflective patch: it includes a 15 watt IR LED on the front of the gun. The camera detects the bright reflection and uses it to track the target, so all you have to do to avoid this particular Terminator is make sure you aren’t wearing anything too shiny.

Continue reading “The Aimbot V3 Aims To Track & Terminate You”

The BR55 battle rifle held in its creator's hands during test firing

Making The Halo 2 Battle Rifle Real

We’ve just been shown a creation that definitely belongs on the list of impressive videogame replicas. This BR55 rifle built by [B Squared Mfg] not only looks exactly like its in-game Halo 2 counterpart, it’s also a fully functional firearm chambered in 5.56. The attention to detail even brings us a game-accurate electronic ammo counter.

The rifle and magazine communicate over three pins.

Unfortunately, the only information we have on the weapon currently is the video below. But he does at least go into detail about the practical aspects: caliber choice, the arduous journey of bolt carrier sourcing, and how the ammo counter works.

Each magazine has a potentiometer built into it to detect the number of rounds loaded, but there’s a bit of trickery involved. In the real world, there’s no way a magazine this size could hold the 36 rounds of ammunition depicted in the game, so for each shot fired, the counter subtracts three. It takes a little imagination, but this way it looks as close to the game version as possible.

There will be no published files due to legal concerns, but there’s nothing you couldn’t build yourself, as long as said legal concerns are sorted out for yourself. Depending on where you live, you might have to settle for building a Gauss gun in the same frame, we’ve even seen slimmer ones done commercially. Whatever you build, make sure you store it in a way others can’t access it easily — not all gun safes pass this test.

Continue reading “Making The Halo 2 Battle Rifle Real”

Build Yourself A Little Mangonel, You Deserve One

If you’re of a certain age, you almost certainly learned about mangonels by playing Age of Empires II. Any intermediate player will tell you they are a powerful siege weapon that nevertheless cannot destroy trees (in game). However, why limit yourself to experiencing this capable siege engine in digital form? With the help of [Arry Koster’s] design, you can build a little mangonel of your very own!

A good-looking siege engine is, more often than not, a well-performing one.

The build is intended for a student or hobbyist audience, and is for a mangonel roughly the size of a shoebox. That’s big enough to have some fun, without being so large as to get you into trouble. The project also comes complete with a useful spreadsheet that lets you simulate the performance of a mangonel hurling a projectile so you can better understand the physics involved.

The mangonel is constructed out of wood, just as medieval examples were. The guide explains how to put the the design together, including the use of graphite to lubricate moving parts — a technique also used historically. Beyond building the siege weapon itself, there are also instructions on how to instrument it with an Arduino to measure its performance accurately.

The only thing this project is missing is a brilliant video of the titchy siege machine in action. We want to see it knocking down some appropriately-sized castles! If you happen to be building your own siege engines, miniature or otherwise, don’t hesitate to drop us a line. Do include some excellent footage of your antics, to boot!

POP! Goes The Hydrogen Howitzer

Military models are great 3D printing projects, even more so if they are somewhat functional. [Flasutie] took it a step further by engineering a 3D-printed howitzer that doesn’t just sit pretty—it launches shells with a hydrogen-powered bang.

This project’s secret sauce? Oxyhydrogen, aka HHO, the mix of hydrogen born when water endures the electric breakup of electrolysis. [Flasutie] wanted functional “high explosive” (HE) projectiles to pop without turning playtime into emergency room visit, and 30 mm was the magic size, allowing the thin-walled PLA projectile to rupture without causing injury, even when held in the hand. To set off the gaseous fireworks, [Flasutie] designed an impact fuze featuring piezoelectric spark mechanism nestled within a soft TPU tip for good impact sensitivity.

The howitzer itself is like something out of a miniaturized military fantasy—nearly entirely 3D printed. It boasts an interrupted thread breech-locking mechanism and recoil-absorbing mechanism inspired by the real thing. The breechblock isn’t just for show; it snaps open under spring power and ejects spent cartridges like hot brass.

Watch the video after the break for the build, satisfying loading sequence and of course cardboard-defeating “armor piercing” (AP) and HE shells knocking out targets.

The World’s First Microprocessor: F-14 Central Air Data Computer

When the Grumman F-14 Tomcat first flew in 1970, it was a marvel. With its variable-sweep wing, twin tail, and sleek lines, it quickly became one of the most iconic jet fighters of the era — and that was before a little movie called Top Gun hit theaters.

A recent video by [Alexander the ok] details something that was far less well-documented about the plane, namely its avionics. The Tomcat was the first aircraft to use a microprocessor-driven flight system, as well as the first microprocessor unit (MPU) ever demonstrated, beating the Intel 4004 by a year. In 1971, one of the designers of the F-14’s Central Air Data Computer (CADC) – [Ray Holt] – wrote an article for Computer Design magazine that was naturally immediately classified by the Navy until released to the public in 1998.

The MPU in the CADC is called the Garrett AiResearch MP944, and consists of a number of ICs that together form a full computer. These were combined in the CADC with additional electronics to control many elements of the airplane automatically, including the weapons system and the variable-sweep wing configuration. This was considered to be essential based on experiences with the F-111 and its very complex electromechanical flight computer, which was an evolution of the 1950s-era Bendix CADC.

The video goes through the differences between the 4-bit Intel 4004 and the 20-bit MP944, questioning whether the 4004 is even really an MPU, the capabilities of the MP944 and its system architecture. Ultimately the question of ‘first’ and that of ‘what is an MPU’ will always be somewhat fuzzy depending on your definitions, but there is no denying that the MP944 was a marvel of large-scale integration.

Continue reading “The World’s First Microprocessor: F-14 Central Air Data Computer”

Teardown Of FGM-148 Javelin Missile’s Guidance Computer

You know it’s a good teardown when [Michel] starts off by saying to not ask him where exactly he got the guidance section of an FGM-148 Javelin from. This shoulder-launched anti-tank guided missile (ATGM) is a true marvel of engineering that has shown its chops during recent world events. As a fire-and-forget type guided missile it is designed to use the internal IR tracker to maintain a constant lock on the target, using its guidance system to stay exactly on track.

FGM-148 Javelin schematic overview. (Source: U.S. Army, FM 3-22.37)
FGM-148 Javelin schematic overview. (Source: U.S. Army, FM 3-22.37)

Initially designed in 1989 and introduced into service in 1996, it has all the ceramic-and-gold styling which one would expect from a military avionics package from the era. Tasked with processing the information from the IR sensor, and continuously adjusting the fins to keep it on course, the two sandwiched, 3 mm thick PCBs that form the main section of the guidance computer are complemented by what looks like a milled aluminium section which holds a sensor and a number of opamps, all retained within the carbon-fiber shell of the missile.

In the video [Michel] looks at the main components, finding datasheets for many commercially available parts, with the date codes on the parts confirming that it’s a late 80s to early 90s version, using presumably a TMS34010 as the main CPU on the DSP board for its additional graphics-related instructions. Even though current production FGM-148s are likely to use far more modern parts, this is a fun look at what was high-end military gear in the late 1980s and early 1990s.

Continue reading “Teardown Of FGM-148 Javelin Missile’s Guidance Computer”

Retrotechtacular: The Gunsmith Of Williamsburg

A modern firearm is likely to be mass-produced using high-precision machine tools, and with a uniformity to the extent that parts from one can be interchanged with those from another. This marks a progression of centuries of innovation, in gunsmithing, in machine tooling, and in metallurgy. In the 18th century there was little of the innovations found in a modern weapon, and a rifle would have been made entirely by hand through the work of a master gunsmith. The video below the break is a fascinating 1969 film following Wallace Gusler, the gunsmith at the museum town of Williamsburg, Virginia, as he makes an 18th-century muzzle-loading flintlock rifle from raw materials. It’s a long video, but it leaves nothing out and has a really informative commentary we’re told from the gunsmith himself.

The film opens with a piece of wrought iron being forged into a long strip. We’ve talked about wrought iron as a difficult-to-find blacksmith’s material before here, so this immediately makes us curious as to what material the current Williamsburg gunsmiths use. The strip is formed round a mandrel and laboriously forge-welded to form a rough tube, before being bored with a series of drills and then rifled with a toothed slug. The finishing is done by had with a file, with the rough tube being filed to an octagonal shape. Continue reading “Retrotechtacular: The Gunsmith Of Williamsburg”