A process of forensic analysis that applied modern-day technology to bridge the chasm of time provides some surprising answers to the question of how the Great Pyramid at Giza was built.
![]() |
Program management is the science and practice of managing large private
and public projects. DMJM functions as the program manager for projects
around the globe, managing large, complex programs for clients in both
the public and private sectors. The logistical issues—making certain everything
comes together at the right time, in the right quantity, with the right
quality—are among the greatest challenges of these projects and become
the major preoccupation of the program manager. To clearly illustrate the
complex activities undertaken by a program manager in today's environment,
DMJM sought a compelling example that would be familiar to most people.
Someone commented, "If you think managing today's projects is complex,
try building the Great Pyramid!" And thus, our project—Program/Construction
Management in 2550 b.c.: Building the Great Pyramid at Giza—was born.
Initially, our goal was simply to identify the major steps that a hypothetical program manager would have undertaken to construct the Great Pyramid at Giza. We asked the team of construction managers to visualize the work that would be required so that we could prepare logic diagrams, schedules, and other tools of the program manager. But as the project unfolded a strange transformation took place: Members of the team became absorbed by the challenge. How would you build the Great Pyramid? Engineering, mathematics, and science—disciplines necessary to execute large construction projects—were well established in ancient Egypt. The Egyptians could predict the flooding of the Nile, identify major stars and the position of the stellar bodies with some accuracy, and calculate areas and volumes of structures as complex as the pyramids. In addition to having a system of written records, they used many basic tools made of copper, including saws, chisels, hammers, and drills, and understood the principles of the lever and the inclined ramp. It is reasonable to assume, then, that they possessed both the ability and the resources to undertake a project as complex as the construction of the Great Pyramid at Giza. |
Also known as the Great Pyramid of Khufu—Khufu reigned from 2551 to
2528 b.c.—it was constructed during the fourth dynasty, about 2,550 years
before the birth of Christ, and is the best known and largest of the 80
pyramids discovered along the west bank of the Nile. Indeed, for more than
4,000 years it was the largest man-made structure in the world.
The logistics involved in the construction of this pyramid are staggering
when one considers that the ancient Egyptians had no pulleys, no wheels,
and no iron tools. Large blocks of limestone and granite—some weighing
as much as 20 tons (18 Mg)—had to be cut at quarries and transported by
boat across or down the Nile River. All of the interior rock was carved
on the Giza plateau, but the limestone used on the exterior facing of the
pyramid came from Tura, which was situated across the Nile. Blocks of limestone
weighing anywhere from 2.5 to 6 tons (2.3 to 5.4 Mg) made up the bulk of
the structure. Estimates indicate that more than 2 million such blocks
were used. Most of these were cut from a quarry at Giza; heavier blocks
of granite from Aswan were used to construct the King/s Chamber.
Egyptian workmen perfected the technique of cutting holes in stone
faces with hand-driven drills. Wedges were then inserted into the holes,
and slabs of stone were broken loose by pounding on the wedges with mallets.
The slabs were subsequently dressed down to finished dimensions.
The final dimensions of these stones were extremely accurate on the
exterior faces of the pyramid: the joints were made within fractions of
an inch—n some cases substantially less than 1/8 in. (3 mm). The pyramid
was oriented with its major sides either north-south or east-west. This
in itself was a remarkable undertaking, given the accuracy to which it
was done, because the Egyptians had to perform the work using astronomical
or solar observations—the compass had not yet been invented. The dimensions
of the pyramid are extremely accurate and the site was leveled within a
fraction of an inch over the entire base. This is comparable to the accuracy
possible with modern construction methods and laser leveling.
The Greek historian Herodotus wrote that the construction of the ramp
and pyramid occupied 30 years with a workforce of 100,000 men. There is
also speculation that some of the workforce was seasonal, consisting largely
of farmers who arrived during the periods when the Nile flooded and they
were unable to work in their fields. The 100,000 figure seems high in the
light of what we know today, but by any standard and from any point of
view this was a mammoth undertaking.
Excavations indicate the presence of an artisans' village, which may
have housed some 4,000 to 5,000 people. This, plus evidence of tools and
workshops, led us to surmise that there was a full-time workforce of about
4,000 to 5,000, not including the workers responsible for cutting limestone
at the distant quarries, transporting it to Giza, and bringing it to the
site. This number also did not include the administrative and support staff
necessary to feed and care for a permanent workforce or those necessary
to handle the logistics of bringing in supplies, timbers for scaffolding
and rollers, stone blocks, and other construction materials.
![]() |
Craig Smith and Mark Lehner worked closely on the forensic analysis that explained how the Great Pyramid was built. The photograph left, which is a view of the Queen's Pyramids at the Pyramid of Khufu, indicated how surface stones were finished. | ![]() |
The unfinished state of this room indicates that the plans changed.
An ascending corridor was constructed from the descending corridor, rising
to the center of the lower portion of the pyramid. Here another chamber
was built, which is known today as the Queen's Chamber. Above the Queen's
Chamber is a large, lengthy, and unique gallery—the Grand Gallery—which
leads to the King's Chamber. This was the intended final resting spot of
King Khufu.
As construction reached the level of the corridor and chamber it was possible for workmen to install the highly finished walls, lintels, and ceiling blocks of the corridors and chambers from a level surface and then build the rest of the pyramid up around them as they proceeded upward. We surmise that the ramp was extended until the top portion of the pyramid was constructed, and at some point a limestone capstone was put in place. |
![]() |
The size of the blocks used in the lower courses of the Pyramid of Khufu is evident in this view. |
The exterior courses of the pyramid were constructed of white Tura limestone
casing stones, which were cut and fitted more accurately than the interior
core stones. These stones were placed with excess material remaining on
the face, to be trimmed at a later time. Once the last row of casing stones
was in place, the ramp and scaffolding were removed to expose several courses
of the casing stones. Then the outer surface was trimmed to the finish
dimensions to give the pyramid a smooth exterior surface. This was done
working downward, as the ramp and scaffolding were removed.
Team members drew upon their expertise in working on large construction
projects to determine how long it would take to cut and transport blocks
of limestone and to erect the pyramid. They tried to imagine the time that
would be required without the availability of modern tools. The first step
in this process was to develop a work breakdown structure—that is, to define
the various elements of the work to be performed.
Once we had the work breakdown structure, we developed a logic diagram
to illustrate the construction sequence that the team found most plausible.
Construction estimators researched the methods used before the introduction
of machinery in order to produce labor estimates for each of the tasks
identified. Where possible these estimates were checked against published
data, but for the most part the team relied on the experience of its members.
Collectively, the team members have overseen large construction projects
in Saudi Arabia involving tens of thousands of workers. Additionally, several
members had experience with labor-intensive construction methods in Third
World countries, including the processes of hand excavation and the pouring
of cement by the bucketful.
These unit estimates were then combined with the engineering estimates
of materials and construction methodology to derive the amount of time
and manpower required to perform each element of the work. The data obtained
were then used to develop a critical path construction schedule. The analyses
enabled the team to reject as impossible certain hypothesized construction
methods. For example, a single ramp to the top of the pyramid would have
extended for more than half a mile and would have involved more construction
than the pyramid itself. Likewise, ramps to each face were found to be
unnecessary.
![]() |
We determined, however, that some type of ramp structure was probably used given the remains of ramps at other sites and our assessment of available construction methods. A single large ramp to level 50 of the pyramid would have been of reasonable height and volume; it would have permitted two-thirds of the blocks to be put in place. The team postulated that after level 50 a square helical ramp would have been constructed on the pyramid itself to reach the upper layers. At this point the number of blocks decreases and constraints on block delivery are not as restrictive. At the apex of the pyramid—the last 10 to 20 levels—the number of blocks is very small. The team suggested that an internal "staircase" was created and that levers were used to place the capstone and the last remaining blocks. |
The critical path analysis showed that the production of blocks from
the quarry would not have been a constraint. Additionally, we determined
that blocks could have been prepared in advance and stockpiled on-site
in the event of a shortage of stonecutters. We assumed a large number of
workmen could be recruited on a seasonal basis to assist in transporting
the blocks up the ramps to the working area, where skilled masons put them
in place and built the corridors and chambers.
The team also worked out the logistics for site preparation, quarry
operations, transportation of the finished limestone from Tura and granite
from Aswan, the creation of a workers' village for permanent skilled staff,
construction of the ramps, performance of the finish work, and removal
of the ramps at the end of construction.
Based on our program management approach and our informed guesses we
concluded that the total project required an average workforce of 13,200
persons and a peak workforce of 40,000 and that it required two to three
years of site preparation, five years of pyramid construction, and two
years of ramp removal, decoration, and other ancillary tasks. Assembling
a workforce of this size—and feeding it—appear to have been well within
the capabilities of the Egyptian economy at that time if the population
was in fact 1 million to 1.5 million.
No records have been found that relate to the design of the Great Pyramid.
However, drawings have been discovered for tombs constructed during later
dynasties. Additionally, plans and other records exist indicating that
at the time of Khufu's reign the Egyptians knew how to calculate volumes,
areas, and angles; that they knew how to level a site and construct right
angles; that they could survey and use solar and astronomical observations
to orient structures; that they understood the concepts of structural load
transfer and apparently had an idea of the load-bearing capacity of the
materials they used; and that they recognized the need for an adequate
foundation for the structure. Because they could calculate the volume of
ramps, we assume they optimized the planning of the construction to minimize
the materials and labor required just as we would today so that labor would
be expended on the most critical and challenging aspects of the project.
We speculated that the pyramid's design was actually implemented by a master
builder or overseer who had worked on another pyramid.
Excavations at Giza show old quarry marks and the remains of a workers'
village. Later excavations at Deir el Medina, where extensive records have
been recovered, support the theory that there was a permanent labor encampment
at the site that housed the skilled stonemasons, draftsmen, and overseers.
The village no doubt had the capacity to support the workforce, because
there is evidence of a bakery—and even tombs for those who died during
the course of the construction. Other aspects of site preparation we considered
were the construction of housing, sanitary facilities, workshops, roads
from the quarry at Giza to the pyramid site, and docks. (The time of the
annual Nile flooding would have been the ideal time to bring in goods by
ship because the floodwaters came within a quarter of a mile of the Giza
site.)
We speculate that the pyramid site was surveyed and then excavated
to bedrock, which would have provided a firm foundation for the pyramid
structure. The Giza plateau was no doubt selected as the site for the pyramid
because of the available limestone and the site's proximity to the pharaoh's
residence. Upon removing the loose material the builders left a rock ridge
that was later incorporated into the pyramid structure. To avoid handling
material any more than was necessary, it is likely that the cut material
was moved to the location of the construction ramp and placed so it could
be part of the ramp.
Once bedrock was exposed the site was leveled. This was most likely
done by the use of a square level—a right angle with a cross piece resembling
the letter A with a plumb bob that hung from the apex and registered against
the cross piece. Leveling was done in a series of measurements that established
benchmarks along the length of the foundation.
Another theory held that leveling was done by constructing a series
of mud canals across the site, filling them with water, and measuring the
depth from the water surface to the rock beneath (establishing baseline
measurements and survey points). However, we discarded this idea because
of the effort that would have been involved in hauling water to cover such
a volume of canals and the losses that would have resulted from evaporation
and leakage.
Next, using either solar observations or star sightings, survey working
points were established and corner positions were fixed. Since the Egyptians
worshiped the sun, it is more credible to us that they understood the movement
of the sun and would have measured the sun's shadow to determine true north.
In a simple experiment with the tools and knowledge available to the ancient
Egyptians, we found that this determination can readily be made.
At this point tunneling to construct the descending corridor and lower
chamber was probably started. A construction gap was left open in the core
blocks while the descending and ascending corridors, the Grand Gallery,
and the King's Chamber were constructed.
![]() |
Quarry operations at Giza began concurrently with the commencement of site preparation. We assume that the bulk of construction material came from the area of the site to minimize transport of heavy blocks. Archaeological evidence supports the contention that there were one or more quarries on-site. We assumed a workforce of sufficient size to keep up with the rate of block installation. (A smaller force could have been used if work started a year in advance to build up a stockpile of blocks.) |
The first step in construction would have been to lay the ground course.
This process would have consisted in placing large blocks with great precision
to establish the dimensions of the pyramid. Based on a survey reported
in the literature, the base is square and is oriented to the four points
of the compass to standards that would be challenging to a builder today.
Construction would have proceeded to add layers above the base, until the
next "step" was achieved. Here the structure would have been carefully
leveled again. It would not have been necessary to level each layer, as
this would have increased the amount of cutting and trimming on each block
and would have wasted material. It is believed that there are 14 to 16
layers per step and 15 to 17 steps.
We assumed that construction was based on three components: the outer
casing stones—carefully dressed white Tura limestone; an inner layer of
"backing stones"; and the core blocks of Giza limestone, which were not
dressed accurately but were fitted into the inner volume of the pyramid
and then leveled only at the next step (not every course). Irregular shapes
were incorporated into the structure to maximize the use of available materials.
Casing blocks would be field dressed so as to fit accurately next to and
on top of their adjoining blocks.
We considered many concepts to understand how the Egyptians were able
to raise blocks to a height of 481 ft (147 m) with the limited tools available.
We assumed the use of rollers but not wheels or pulleys. To evaluate the
ramp issue we first constructed several mathematical models that computed
the number of blocks per layer and the volume, height, and other measurements
of the blocks. We know the blocks are not of uniform dimension—that the
lower blocks are thicker by as much as 5 ft (1.5 m) while the thickness
drops to 2 ft (0.6 m) or less near the top. Not having a survey of typical
sizes, we made a series of calculations based on average sizes (see illustration).
Our calculations convinced us that most of the ramp concepts would
have been impractical because they involved a construction effort greater
than that required for the pyramid itself. We assumed that the Egyptians
would not commit resources to building anything more than minimally required
given the fact that the ramp had to be demolished at the conclusion of
construction.
The literature reports that the Great Pyramid is constructed of 2.3 million blocks and that each weighs on average 2.5 tons (2.3 Mg). Our review found no basis or origin for these numbers, which have been widely quoted. We made our own estimates, assuming various dimensions and a specific weight for limestone of 160 lb/cu ft (2,563 kg/m3). These calculations showed that there could be from 2 million to 2.8 million blocks, depending on the assumptions. We then refined the calculations to deduct for the void volume of corridors and chambers, subtracted an allowance for granite used in lintels, the capstone, and ceilings, and treated the finish layer separately. This suggested that the basic building blocks numbered about 2 million, based on average dimensions of 3 ft (0.9 m) wide, 3.5 ft (1 m) high, and 4 ft (1.2 m) long. |
An interesting possibility is that the capstone might have been brought up to the last level that was reachable by a ramp and then jacked up as the balance of the pyramid was constructed—that is , the pyramid was built beneath it and it rose with the remaining levels. |
Inspection of our mathematical model showed that at the point that layer or level 50 had been reached essentially two-thirds of the blocks had been put in place. This suggests that a single large ramp—to one face of the pyramid—would have been feasible. This ramp would have been 175 ft (23 m) high and more than 1,000 ft (705 m) long and would have had a grade of 15 percent—which we assumed as an upper limit. Also, it would have contained 30 percent of the volume of the pyramid itself. The ramp dimensions would have been influenced by the construction schedule. To construct the pyramid on a reasonable schedule the ramp would have had to be wide enough to enable multiple teams to approach the working surface, deliver their loads, and leave without hindering other workers.
Ultimately we settled on a hybrid ramp scheme. There was a single
ramp on one face of the pyramid up to level 50, from which a series of
ramps wrapping around the pyramid reached level 120. These ramps would
have been much narrower and supported by the pyramid itself and thus could
have been constructed with much less material. We hypothesized that the
blocks in the last two (outer) courses were left out near the corner to
create a takeoff point wide enough for the primary ramp. The secondary
ramps would have been used at an elevation at which the horizontal distance
was long enough for a significant gain in elevation.
We assumed that a third method was used above this point: the "staircase"
left in the center of the construction at the very top. The blocks for
the peak would have been pushed manually from below and pulled up by ropes
over poles or bearing stones up this staircase and then put in place. At
this point the number of blocks required is only about 7,000 for the last
20 layers. Once the capstone had been maneuvered into place the staircase
would have been filled in from the top down to the platform level at the
end of the last ramp.
An interesting possibility to consider is that the capstone might have
been brought up to the last level that was reachable by a ramp and then
jacked up as the balance of the pyramid was constructed—that is, the pyramid
was built beneath it and it rose with the remaining levels.
The pyramid was finished with white limestone casing stones from the
quarry across the Nile River at Tura. We assume that the finish blocks
were brought by ship to Giza. These blocks were carefully placed, then
trimmed after placement to provide a smooth exterior surface. Using the
same model to calculate the number of finish blocks that we had used to
determine the number of blocks per layer, we determined that the number
was approximately 53,000.
We assumed that scaffolding was erected at the top levels to position
these blocks and that the work proceeded upward course by course. Because
the topmost blocks were half the size of the regular blocks, they could
be positioned by hand. Once the work reached the top of the pyramid any
missing blocks were filled in down the staircase and any finishing touches
were performed. As layers were completed the ramp was gradually removed.
We determined that there were 3 workweeks of 10 days per month—8 days
of work followed by 1 to 2 days off. A workday consisted of four to five
hours in the morning followed by four to five hours after lunch. Deductions
would be necessary for holidays and religious observances, so we used 280
working days per year as our estimate for construction time.
We estimated that a delivery rate of 180 blocks per hour was required
from level 50 to level 74 and then used this rate to determine if the ramp
size and number of crews were feasible. This seemed possible. We then determined
that at the lower level the ramp would be wider and could sustain delivery
rates twice this number. Above level 75 the delivery rate drops off because
of the smaller number of blocks, so ramp size and crew numbers are reduced.
The size of crews can be estimated in various ways. Carrying capacity will
ultimately depend on load and distance. We assumed an average crew of 20
men.
![]() This detail indicates how casing stones were cut to the proper angle. |
Unit cost estimates were developed from a variety of sources, including the team's judgment and experience. For example, our stonecutting estimate of two man-days per block is based on our judgment. For the average block we assumed that a team of 20 laborers was required to pull a sled up the ramp and onto the work area. This would require four hours on average (up to level 50), which meant that a team could move two blocks per day. Ten man-days were required, therefore, to move each block into place. |
For estimations regarding excavation and ramp construction, we consulted
turn-of-the-century civil engineering handbooks and established unit rates
for moving earth manually. This corresponded to about 1 cu yd/h (0.8 m3/h),
with time added depending on the distance the material was carried. We
estimated that at an average distance the rate was 0.03 d/cu ft (0.1 d/m3).
We also prepared a manpower labor forecast. Once courses 1 through 50 were
completed the labor requirements dropped off considerably; additionally,
the skilled labor requirements are consistent with a workers' village of
4,000 to 5,000 persons on-site. The total labor expended is 36.7 million
days, or approximately 131,200 man-years. Thus the average labor force
over the 10-year duration of the project is therefore 13,200 men.
We learned that workers were paid in grain—to make bread and beer—as
well as in oil, other foods, and cloth. Payments differed, of course, depending
on the level of skill and rank. Ancient records indicate that a superintendent
earned 8 jugs of beer and 16 loaves of bread daily. We arbitrarily prorated
these numbers to estimate payments to other classes of workers. While this
is undoubtedly an oversimplification, it provides a rough measure of the
total cost of the construction. There was a barter economy in place then,
so a worker with one set of skills might perform work for another, who
would return the favor by making something for him. There was also some
moonlighting going on as workers used their free time to work for third
parties. Thus the total labor costs for construction of the pyramid were
approximately 111 million jugs of beer and 126 million loaves of bread
over the 10-year span of the project. The production capacity for agrarian
Egypt at that time suggests that it was perfectly plausible for the economy
to support such an undertaking over that period of time.
While there is uncertainty as to precisely how the Egyptians built
the Great Pyramid, there is certainty about the fact that it was done.
The pyramid stands today as awesome testimony to the skill and sheer determination
of the ancient race that built it. We must also stand in awe of their program
management techniques, as it is equally certain that they had highly developed
administrative and planning skills. The complexity and logistical requirements
of this project are simply extraordinary.
Craig B. Smith, P.E., Ph.D., is the chief operating officer of Daniel, Mann, Johnson & Mendenhall in Los Angeles. He explained this project in the television special "The Great Builders of Egypt," which aired on the Arts & Entertainment channel earlier this year.
![]() |
Back to June 1999 CE Magazine Table of Contents |