Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Role of CYP24A1, VDR and GC gene polymorphisms on deferasirox pharmacokinetics and clinical outcomes

Abstract

β-Thalassemia patients develop deficiency in vitamin D absorption and liver hydroxylation, resulting in extremely low calcitriol levels. We explored the role of single-nucleotide polymorphisms (SNPs) involved in vitamin D metabolism, transport and activity on deferasirox pharmacokinetics and outcomes (effectiveness trough levels (Ctrough) and the area under the curve (AUC) cutoffs of 20 μg ml−1 and 360 μg ml−1 h−1, respectively; nonresponse AUC limit of 250 μg ml−1 h−1). Ninety-nine β-thalassemic patients were enrolled. Drug plasma Ctrough and AUC were measured by the high-performance liquid chromatography system coupled with an ultraviolet determination method. Allelic discrimination for VDR, CYP24A1, CYP27B1 and GC gene SNPs was performed by real-time PCR. CYP24A1 22776 TT significantly influenced Cmin and negatively predicted it in regression analysis. CYP24A1 3999 CC was associated with Ctrough and Cmin and was a negative predictor of Tmax, whereas CYP24A1 8620 GG seemed to have a role in Ctrough, AUC, t1/2 and Cmin, and was an AUC negative predictor factor. Considering treatment outcome, Cdx2 and GC 1296 were retained in regression analysis as AUC efficacy cutoff negative predictors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kushner JP, Porter JP, Olivieri NF . Secondary iron overload. Hematology Am Soc Hematol Educ Program 2001; 1: 47–61.

    Article  Google Scholar 

  2. Cappellini MD, Cohen A, Piga A, Bejaoui M, Perrotta S, Agaoglu L et al. A phase 3 study of deferasirox (ICL670), a once-daily oral iron chelator, in patients with beta-thalassemia. Blood 2006; 107: 3455–3462.

    Article  CAS  PubMed  Google Scholar 

  3. Hoffbrand AV, Cohen A, Hershko C . Role of deferiprone in chelation therapy for transfusional iron overload. Blood 2003; 102: 17–24.

    Article  CAS  PubMed  Google Scholar 

  4. Farmaki K, Tzoumari I, Pappa C, Chouliaras G, Berdoukas V . Normalisation of total body iron load with very intensive combined chelation reverses cardiac and endocrine complications of thalassaemia major. Br J Haematol 2010; 148: 466–475.

    Article  PubMed  Google Scholar 

  5. Nisbet-Brown E, Olivieri NF, Giardina PJ, Grady RW, Neufeld EJ, Sechaud R et al. Effectiveness and safety of ICL670 in iron-loaded patients with thalassaemia: a randomised, double-blind, placebo-controlled, dose-escalation trial. Lancet 2003; 361: 1597–1602.

    Article  CAS  PubMed  Google Scholar 

  6. Waldmeier F, Bruin GJ, Glaenzel U, Hazell K, Sechaud R, Warrington S et al. Pharmacokinetics, metabolism, and disposition of deferasirox in beta-thalassemic patients with transfusion-dependent iron overload who are at pharmacokinetic steady state. Drug Metab Dispos 2010; 38: 808–816.

    Article  CAS  PubMed  Google Scholar 

  7. Bruin GJ, Faller T, Wiegand H, Schweitzer A, Nick H, Schneider J et al. Pharmacokinetics, distribution, metabolism, and excretion of deferasirox and its iron complex in rats. Drug Metab Dispos 2008; 36: 2523–2538.

    Article  CAS  PubMed  Google Scholar 

  8. Taher A, Cappellini MD, Vichinsky E, Galanello R, Piga A, Lawniczek T et al. Efficacy and safety of deferasirox doses of >30mg/kg per d in patients with transfusion-dependent anaemia and iron overload. Br J Haematol 2009; 147: 752–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. FDA. Exjade (deferasirox) Prescribing Information. Novartis Pharmaceuticals Corporation 2007.

  10. Nick H, Wong A, Acklin P, Faller B, Jin Y, Lattmann R et al. ICL670A: preclinical profile. Adv Exp Med Biol 2002; 509: 185–203.

    Article  CAS  PubMed  Google Scholar 

  11. Nick H, Acklin P, Lattmann R, Buehlmayer P, Hauffe S, Schupp J et al. Development of tridentate iron chelators: from desferrithiocin to ICL670. Curr Med Chem 2003; 10: 1065–1076.

    Article  CAS  PubMed  Google Scholar 

  12. Galanello R, Origa R . Once-daily oral deferasirox for the treatment of transfusional iron overload. Expert Rev Clin Pharmacol 2008; 1: 231–240.

    Article  CAS  PubMed  Google Scholar 

  13. Cappellini MD . Exjade(R) (deferasirox, ICL670) in the treatment of chronic iron overload associated with blood transfusion. Ther Clin Risk Manag 2007; 3: 291–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Galanello R, Piga A, Alberti D, Rouan MC, Bigler H, Sechaud R . Safety, tolerability, and pharmacokinetics of ICL670, a new orally active iron-chelating agent in patients with transfusion-dependent iron overload due to beta-thalassemia. J Clin Pharmacol 2003; 43: 565–572.

    Article  CAS  PubMed  Google Scholar 

  15. Chirnomas D, Smith AL, Braunstein J, Finkelstein Y, Pereira L, Bergmann AK et al. Deferasirox pharmacokinetics in patients with adequate versus inadequate response. Blood 2009; 114: 4009–4013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cusato J, Allegra S, Massano D, De Francia S, Piga A, D'Avolio A . Influence of single-nucleotide polymorphisms on deferasirox C trough levels and effectiveness. Pharmacogenomics J 2014; 15: 263–271.

    Article  PubMed  CAS  Google Scholar 

  17. Allegra S, Cusato J, Francia SD, Massano D, Piga A, D'Avolio A . Role of pharmacogenetic on deferasirox AUC and efficacy. In: European Society of Human Genetics. Glasgow: 2015.

  18. Allegra S, Cusato J, De Francia S, Massano D, Piga A, D'Avolio A . Deferasirox AUC efficacy cutoff and role of pharmacogenetics. Eur J Clin Pharmacol 2016; 72: 1155–1157.

    Article  CAS  PubMed  Google Scholar 

  19. Dimitriadou M, Christoforidis A, Fidani L, Economou M, Vlachaki E, Athanassiou-Metaxa M et al. A 2-year prospective densitometric study on the influence of Fok-I gene polymorphism in young patients with thalassaemia major. Osteoporos Int 2015; 27: 781–788.

    Article  PubMed  CAS  Google Scholar 

  20. Moulas A, Challa A, Chaliasos N, Lapatsanis PD . Vitamin D metabolites (25-hydroxyvitamin D, 24,25-dihydroxyvitamin D and 1,25-dihydroxyvitamin D) and osteocalcin in beta-thalassaemia. Acta Paediatr 1997; 86: 594–599.

    Article  CAS  PubMed  Google Scholar 

  21. Napoli N, Carmina E, Bucchieri S, Sferrazza C, Rini GB, Di Fede G . Low serum levels of 25-hydroxy vitamin D in adults affected by thalassemia major or intermedia. Bone 2006; 38: 888–892.

    Article  CAS  PubMed  Google Scholar 

  22. Wood JC, Claster S, Carson S, Menteer JD, Hofstra T, Khanna R et al. Vitamin D deficiency, cardiac iron and cardiac function in thalassaemia major. Br J Haematol 2008; 141: 891–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brittenham GM, Badman DG . Noninvasive measurement of iron: report of an NIDDK workshop. Blood 2003; 101: 15–19.

    Article  CAS  PubMed  Google Scholar 

  24. Jensen PD . Evaluation of iron overload. Br J Haematol 2004; 124: 697–711.

    Article  CAS  PubMed  Google Scholar 

  25. De Francia S, Massano D, Piccione FM, Pirro E, Racca S, Di Carlo F et al. A new HPLC UV validated method for therapeutic monitoring of deferasirox in thalassaemic patients. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 893-894: 127–133.

    Article  CAS  PubMed  Google Scholar 

  26. Rodriguez S, Gaunt TR, Day IN . Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol 2009; 169: 505–514.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ et al. Linkage disequilibrium in the human genome. Nature 2001; 411: 199–204.

    Article  CAS  PubMed  Google Scholar 

  28. Modell B, Darlison M . Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ 2008; 86: 480–487.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thein SL . The molecular basis of beta-thalassemia. Cold Spring Harb Perspect Med 2013; 3: a011700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Webb AR, Kline L, Holick MF . Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab 1988; 67: 373–378.

    Article  CAS  PubMed  Google Scholar 

  31. Meier U, Gressner O, Lammert F, Gressner AM . Gc-globulin: roles in response to injury. Clin Chem 2006; 52: 1247–1253.

    Article  CAS  PubMed  Google Scholar 

  32. Bouillon R, Xiang DZ, Convents R, Van Baelen H . Polyunsaturated fatty acids decrease the apparent affinity of vitamin D metabolites for human vitamin D-binding protein. J Steroid Biochem Mol Biol 1992; 42: 855–861.

    Article  CAS  PubMed  Google Scholar 

  33. Malik S, Fu L, Juras DJ, Karmali M, Wong BY, Gozdzik A et al. Common variants of the vitamin D binding protein gene and adverse health outcomes. Crit Rev Clin Lab Sci 2013; 50: 1–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Christakos S, Ajibade DV, Dhawan P, Fechner AJ, Mady LJ . Vitamin D: metabolism. Rheum Dis Clin North Am 2012; 38: 1–11, vii.

    Article  PubMed  Google Scholar 

  35. Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 1999; 96: 507–515.

    Article  CAS  PubMed  Google Scholar 

  36. Weisman Y, Harell A, Edelstein S, David M, Spirer Z, Golander A . 1 alpha, 25-Dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in vitro synthesis by human decidua and placenta. Nature 1979; 281: 317–319.

    Article  CAS  PubMed  Google Scholar 

  37. Gray TK, Lester GE, Lorenc RS . Evidence for extra-renal 1 alpha-hydroxylation of 25-hydroxyvitamin D3 in pregnancy. Science 1979; 204: 1311–1313.

    Article  CAS  PubMed  Google Scholar 

  38. Stoffels K, Overbergh L, Bouillon R, Mathieu C . Immune regulation of 1alpha-hydroxylase in murine peritoneal macrophages: unravelling the IFNgamma pathway. J Steroid Biochem Mol Biol 2007; 103: 567–571.

    Article  CAS  PubMed  Google Scholar 

  39. Esteban L, Vidal M, Dusso A . 1alpha-Hydroxylase transactivation by gamma-interferon in murine macrophages requires enhanced C/EBPbeta expression and activation. J Steroid Biochem Mol Biol 2004; 89-90: 131–137.

    Article  CAS  PubMed  Google Scholar 

  40. Jones G, Prosser DE, Kaufmann M . 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): its important role in the degradation of vitamin D. Arch Biochem Biophys 2011; 523: 9–18.

    Article  PubMed  CAS  Google Scholar 

  41. Knutson JC, DeLuca HF . 25-Hydroxyvitamin D3-24-hydroxylase. Subcellular location and properties. Biochemistry 1974; 13: 1543–1548.

    Article  CAS  PubMed  Google Scholar 

  42. Jones G, Strugnell SA, DeLuca HF . Current understanding of the molecular actions of vitamin D. Physiol Rev 1998; 78: 1193–1231.

    Article  CAS  PubMed  Google Scholar 

  43. Hewison M . Vitamin D and the immune system: new perspectives on an old theme. Endocrinol Metab Clin North Am 2010; 39: 365–379, table of contents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Plum LA, DeLuca HF . Vitamin D, disease and therapeutic opportunities. Nat Rev Drug Discov 2010; 9: 941–955.

    Article  CAS  PubMed  Google Scholar 

  45. Bikle DD . Vitamin D: an ancient hormone. Exp Dermatol 2011; 20: 7–13.

    Article  CAS  PubMed  Google Scholar 

  46. Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR et al. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA 1988; 85: 3294–3298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin R, Nagai Y, Sladek R, Bastien Y, Ho J, Petrecca K et al. Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EB1089 signaling on cell proliferation, differentiation, and immune system regulation. Mol Endocrinol 2002; 16: 1243–1256.

    Article  CAS  PubMed  Google Scholar 

  48. Wood RJ, Tchack L, Angelo G, Pratt RE, Sonna LA . DNA microarray analysis of vitamin D-induced gene expression in a human colon carcinoma cell line. Physiol Genomics 2004; 17: 122–129.

    Article  CAS  PubMed  Google Scholar 

  49. Wang TT, Tavera-Mendoza LE, Laperriere D, Libby E, MacLeod NB, Nagai Y et al. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol 2005; 19: 2685–2695.

    Article  CAS  PubMed  Google Scholar 

  50. Fujiki R, Kim MS, Sasaki Y, Yoshimura K, Kitagawa H, Kato S . Ligand-induced transrepression by VDR through association of WSTF with acetylated histones. EMBO J 2005; 24: 3881–3894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huhtakangas JA, Olivera CJ, Bishop JE, Zanello LP, Norman AW . The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1 alpha,25(OH)2-vitamin D3 in vivo and in vitro. Mol Endocrinol 2004; 18: 2660–2671.

    Article  CAS  PubMed  Google Scholar 

  52. Rebsamen MC, Sun J, Norman AW, Liao JK . 1alpha,25-dihydroxyvitamin D3 induces vascular smooth muscle cell migration via activation of phosphatidylinositol 3-kinase. Circ Res 2002; 91: 17–24.

    Article  CAS  PubMed  Google Scholar 

  53. Poon AH, Gong L, Brasch-Andersen C, Litonjua AA, Raby BA, Hamid Q et al. Very important pharmacogene summary for VDR. Pharmacogenet Genomics 2012; 22: 758–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Deeb KK, Trump DL, Johnson CS . Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 2007; 7: 684–700.

    Article  CAS  PubMed  Google Scholar 

  55. Lou YR, Qiao S, Talonpoika R, Syvala H, Tuohimaa P . The role of Vitamin D3 metabolism in prostate cancer. J Steroid Biochem Mol Biol 2004; 92: 317–325.

    Article  CAS  PubMed  Google Scholar 

  56. Syvanen AC . Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2001; 2: 930–942.

    Article  CAS  PubMed  Google Scholar 

  57. Holt SK, Kwon EM, Koopmeiners JS, Lin DW, Feng Z, Ostrander EA et al. Vitamin D pathway gene variants and prostate cancer prognosis. Prostate 2010; 70: 1448–1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Oh JJ, Byun SS, Lee SE, Hong SK, Jeong CW, Choi WS et al. Genetic variants in the CYP24A1 gene are associated with prostate cancer risk and aggressiveness in a Korean study population. Prostate Cancer Prostatic Dis 2014; 17: 149–156.

    Article  CAS  PubMed  Google Scholar 

  59. Ramasamy A, Trabzuni D, Forabosco P, Smith C, Walker R, Dillman A et al. Genetic evidence for a pathogenic role for the vitamin D3 metabolizing enzyme in multiple sclerosis. Mult Scler Relat Disord 2015; 3: 211–219.

    Article  Google Scholar 

  60. Wang Y, Wang O, Li W, Ma L, Ping F, Chen L et al. Variants in Vitamin D binding protein gene are associated with gestational diabetes mellitus. Medicine (Baltimore) 2015; 94: e1693.

    Article  CAS  PubMed Central  Google Scholar 

  61. Hallau J, Hamann L, Schumann RR, Worm M, Heine G . A promoter polymorphism of the vitamin D metabolism gene Cyp24a1 is associated with severe atopic dermatitis in adults. Acta Derm Venereol 2016; 96: 169–172.

    Article  CAS  PubMed  Google Scholar 

  62. Bosse Y, Lemire M, Poon AH, Daley D, He JQ, Sandford A et al. Asthma and genes encoding components of the vitamin D pathway. Respir Res 2009; 10: 98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Wjst M . Variants in the vitamin D receptor gene and asthma. BMC Genet 2005; 6: 2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Brehm JM, Schuemann B, Fuhlbrigge AL, Hollis BW, Strunk RC, Zeiger RS et al. Serum vitamin D levels and severe asthma exacerbations in the Childhood Asthma Management Program study. J Allergy Clin Immunol 2010; 126: 52–58 e55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cusato J, Allegra S, Boglione L, De Nicolo A, Baietto L, Cariti G et al. Vitamin D pathway gene variants and HCV-2/3 therapy outcomes. Antivir Ther 2014; 20: 335–341.

    Article  PubMed  CAS  Google Scholar 

  66. Cusato J, Allegra S, De Nicolo A, Boglione L, Fatiguso G, Mohamed Abdi A et al. Intracellular and plasma trough concentration and pharmacogenetics of telaprevir. J Pharm Pharm Sci 2015; 18: 171–176.

    Article  CAS  PubMed  Google Scholar 

  67. Fatiguso G, Allegra S, Calcagno A, Baietto L, Motta I, Favata F et al. Ethambutol plasma and intracellular pharmacokinetics: a pharmacogenetic study. Int J Pharm 2015; 497: 287–292.

    Article  PubMed  CAS  Google Scholar 

  68. Rukin NJ, Strange RC . What are the frequency, distribution, and functional effects of vitamin D receptor polymorphisms as related to cancer risk? Nutr Rev 2007; 65 (8 Pt 2): S96–101.

    Article  PubMed  Google Scholar 

  69. Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP . Genetics and biology of vitamin D receptor polymorphisms. Gene 2004; 338: 143–156.

    Article  CAS  PubMed  Google Scholar 

  70. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376: 180–188.

  71. Miyamoto K, Kesterson RA, Yamamoto H, Taketani Y, Nishiwaki E, Tatsumi S et al. Structural organization of the human vitamin D receptor chromosomal gene and its promoter. Mol Endocrinol 1997; 11: 1165–1179.

    Article  CAS  PubMed  Google Scholar 

  72. Crofts LA, Hancock MS, Morrison NA, Eisman JA . Multiple promoters direct the tissue-specific expression of novel N-terminal variant human vitamin D receptor gene transcripts. Proc Natl Acad Sci USA 1998; 95: 10529–10534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bouillon R, Okamura WH, Norman AW . Structure-function relationships in the vitamin D endocrine system. Endocr Rev 1995; 16: 200–257.

    CAS  PubMed  Google Scholar 

  74. Menezes RJ, Cheney RT, Husain A, Tretiakova M, Loewen G, Johnson CS et al. Vitamin D receptor expression in normal, premalignant, and malignant human lung tissue. Cancer Epidemiol Biomarkers Prev 2008; 17: 1104–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bikle DD . Vitamin D regulation of immune function. Vitam Horm 2011; 86: 1–21.

    Article  CAS  PubMed  Google Scholar 

  76. Jehan F, Gaucher C, Nguyen TM, Walrant-Debray O, Lahlou N, Sinding C et al. Vitamin D receptor genotype in hypophosphatemic rickets as a predictor of growth and response to treatment. J Clin Endocrinol Metab 2008; 93: 4672–4682.

    Article  CAS  PubMed  Google Scholar 

  77. Thirumaran RK, Lamba JK, Kim RB, Urquhart BL, Gregor JC, Chande N et al. Intestinal CYP3A4 and midazolam disposition in vivo associate with VDR polymorphisms and show seasonal variation. Biochem Pharmacol 2012; 84: 104–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Song YH, Naumova AK, Liebhaber SA, Cooke NE . Physical and meiotic mapping of the region of human chromosome 4q11-q13 encompassing the vitamin D binding protein DBP/Gc-globulin and albumin multigene cluster. Genome Res 1999; 9: 581–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Carpenter TO, Zhang JH, Parra E, Ellis BK, Simpson C, Lee WM et al. Vitamin D binding protein is a key determinant of 25-hydroxyvitamin D levels in infants and toddlers. J Bone Miner Res 2013; 28: 213–221.

    Article  CAS  PubMed  Google Scholar 

  80. Wjst M, Altmuller J, Faus-Kessler T, Braig C, Bahnweg M, Andre E . Asthma families show transmission disequilibrium of gene variants in the vitamin D metabolism and signalling pathway. Respir Res 2006; 7: 60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Anderson LN, Cotterchio M, Cole DE, Knight JA . Vitamin D-related genetic variants, interactions with vitamin D exposure, and breast cancer risk among Caucasian women in Ontario. Cancer Epidemiol Biomarkers Prev 2011; 20: 1708–1717.

    Article  CAS  PubMed  Google Scholar 

  82. Cancado R, Melo MR, de Moraes Bastos R, Santos PC, Guerra-Shinohara EM, Ballas SK et al. Deferasirox in patients with iron overload secondary to hereditary hemochromatosis: results of a 1-year Phase 2 study. Eur J Haematol 2015; 95: 545–550.

    Article  CAS  PubMed  Google Scholar 

  83. Rose C, Brechignac S, Vassilief D, Pascal L, Stamatoullas A, Guerci A et al. Does iron chelation therapy improve survival in regularly transfused lower risk MDS patients? A multicenter study by the GFM (Groupe Francophone des Myelodysplasies). Leuk Res 2010; 34: 864–870.

    Article  CAS  PubMed  Google Scholar 

  84. Neukirchen J, Fox F, Kundgen A, Nachtkamp K, Strupp C, Haas R et al. Improved survival in MDS patients receiving iron chelation therapy - a matched pair analysis of 188 patients from the Dusseldorf MDS registry. Leuk Res 2012; 36: 1067–1070.

    Article  CAS  PubMed  Google Scholar 

  85. Leitch HA, Chan C, Leger CS, Foltz LM, Ramadan KM, Vickars LM . Improved survival with iron chelation therapy for red blood cell transfusion dependent lower IPSS risk MDS may be more significant in patients with a non-RARS diagnosis. Leuk Res 2012; 36: 1380–1386.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank CoQuaLab (www.coqualab.it) for its methodological support and assistance in the preparation and execution of the pharmacogenetic analysis. Laboratory of Clinical Pharmacology and Pharmacogenetics: UNI EN ISO UNI EN ISO 9001:2008 and 13485:2012 (CE-IVD) Certified Laboratory; Certificate No. IT-64386; Certification for: ‘DESIGN, DEVELOPMENT AND APPLICATION OF DETERMINATION METHODS FOR ANTI-INFECTIVE DRUGS. PHARMACOGENETIC ANALYSES.’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Allegra.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allegra, S., Cusato, J., De Francia, S. et al. Role of CYP24A1, VDR and GC gene polymorphisms on deferasirox pharmacokinetics and clinical outcomes. Pharmacogenomics J 18, 506–515 (2018). https://doi.org/10.1038/tpj.2017.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2017.43

This article is cited by

Search

Quick links