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ABSTRACT

The observational census of trans-Neptunian objects with semi-major axes greater than ∼ 250 AU
exhibits unexpected orbital structure that is most readily attributed to gravitational perturbations
induced by a yet-undetected, massive planet. Although the capacity of this planet to (i) reproduce
the observed clustering of distant orbits in physical space, (ii) facilitate dynamical detachment of their
perihelia from Neptune, and (iii) excite a population of long-period centaurs to extreme inclinations
is well established through numerical experiments, a coherent theoretical description of the dynamical
mechanisms responsible for these effects remains elusive. In this work, we characterize the dynamical
processes at play, from semi-analytic grounds. We begin by considering a purely secular model of
orbital evolution induced by Planet Nine, and show that it is at odds with the ensuing stability of
distant objects. Instead, the long-term survival of the clustered population of long-period KBOs is
enabled by a web of mean-motion resonances driven by Planet Nine. Then, by taking a compact-form
approach to perturbation theory, we show that it is the secular dynamics embedded within these
resonances that regulates the orbital confinement and perihelion detachment of distant Kuiper belt
objects. Finally, we demonstrate that the onset of large-amplitude oscillations of orbital inclinations
is accomplished through capture of low-inclination objects into a high-order secular resonance and
identify the specific harmonic that drives the evolution. In light of the developed qualitative under-
standing of the governing dynamics, we offer an updated interpretation of the current observational
dataset within the broader theoretical framework of the Planet Nine hypothesis.

1. INTRODUCTION

Over the course of one hundred and seventy years that
followed the successful prediction of Neptune (LeVerrier
1846; Adams 1846), the presence of additional planets
within the solar system has been contemplated by an
extensive list of astronomers and celestial mechanicians
(Hoyt 1980). Historically, the lines of evidence for the
existence of distant, massive bodies that orbit the sun
have ranged from the (apparently) anomalous motion of
Uranus (Pickering & Pickering 1909; Lowell 1915) and
unexpected orbital characteristics of long-period comets
(Forbes 1880; Matese & Whitmire 1986), to the peculiar
structure of the solar system’s small body populations
(Brunini & Melita 2002; Gladman & Chan 2006; Gomes
et al. 2006; Lykawka & Mukai 2008; Trujillo & Sheppard
2014; Volk & Malhotra 2017). The predicted physical
and orbital properties of the putative planets have been
equally as varied, with inferred masses and semi-major
axes spanning the Mars-Jupiter range and tens to thou-
sands of astronomical units, respectively.

A recent addition to the aggregate of planetary pre-
dictions within the solar system is the Planet Nine hy-
pothesis1 (Batygin & Brown 2016a). Within the frame-
work of this model, the observed orbital clustering of

1 The Planet Nine hypothesis was inspired by the work of Tru-
jillo & Sheppard (2014), who noted that the arguments of perihe-
lion (the angle between the apsidal and nodal lines on an orbit) of
distant Kuiper belt objects are grouped together. In contrast with
this finding, the primary aim of Planet Nine’s inferred influence is
to explain the simultaneous clustering of the longitudes of perihe-
lion (a proxy for the direction of the pericenter in physical space)
and the longitudes of ascending node (orientation of the orbital
plane).

a & 250 AU Kuiper belt objects (Figure 1) is sculpted by
a m ∼ 10m⊕ planet residing on an appreciably eccentric
(e ∼ 0.3−0.7), large semi-major axis (a ∼ 300−700 AU)
orbit, whose plane roughly coincides with the plane of
the distant bodies, and is characterized by perihelion
direction that is anti-aligned with respect to the aver-
age apsidal orientation of the KBOs. In addition to
(i) facilitating the orbital confinement of the aforemen-
tioned population of long-period KBOs and (ii) providing
a physical mechanism for the perihelion detachment of
Sedna-type orbits from Neptune, the presence of Planet
Nine entails a series of additional consequences for the
observed structure of the solar system (Brown & Baty-
gin 2016). In particular, it has been shown that the dy-
namical effects of Planet Nine naturally explain (iii) the
existence of highly inclined, large semi-major axis Cen-
taurs (Gomes et al. 2015; Batygin & Brown 2016a), (iv)
the six-degree obliquity of the sun (Bailey et al. 2016;
Lai 2016; Gomes et al. 2017), as well as (v) the origins
of proximate (a < 100 AU) retrograde KBOs (Batygin &
Brown 2016b).

A key characteristic that differentiates the various
planetary proposals is the dynamical mechanism through
which the envisaged planet generates its observational
signatures. In this regard, the Planet Nine (P9) hypoth-
esis remains incomplete. While numerical simulations
reveal that synthetic models of the solar system that in-
clude Planet Nine can provide a good match to the ob-
servational data (see however Nesvorny et al. 2017), the
dynamical process through which physical confinement
of the distant orbits occurs remains poorly understood.

The original study of Batygin & Brown (2016a) sug-
gested that mean-motion resonances (including those
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of high order) are responsible for orbital clustering.
Expanding on this idea, Malhotra et al. (2016) have
suggested that each of the distant KBOs are cur-
rently trapped in N :1 and N :2 mean motion resonances
(MMRs) with Planet Nine. More recently, Millholland
& Laughlin (2017); Becker et al. (2017) have carried out
a large-scale numerical exploration of the resonant hy-
pothesis in relation to the existing data, further demon-
strating its viability. Meanwhile, Beust (2016) has shown
that a purely secular treatment of the dynamics pro-
vides a good match to the simulation results of Baty-
gin & Brown (2016a), suggesting that resonant dynam-
ics may be irrelevant to the problem at hand. In light of
these conflicting results, the dominant P9-KBO interac-
tion mechanism remains elusive, and its identification is
the primary purpose of this paper.

Analytical characterization of P9-KBO coupling is im-
portant for three reasons, the first being falsifiability.
The specific perturbation mechanism (along with the
data it aims to explain) draws the distinction between
various planetary hypotheses, and can be used to refute
a specific model upon confrontation with the data. As an
example, suppose that an observational survey discovers
a planet at a radial separation of a few hundred AU, but
the gravitational effects of this planet do not facilitate
a physical confinement among the distant KBO orbits
through the envisioned dynamical process2. Such a dis-
covery would imply that the Planet Nine hypothesis, as
formulated, is incorrect.

A second, more practical motivation for studying P9-
KBO interactions is the link between existing observa-
tions and the predicted orbit of Planet Nine. That is, if
all distant KBOs are presently trapped in MMRs with
P9, their mean longitudes may contain information about
the location of Planet Nine on its orbit (Malhotra et al.
2016; Millholland & Laughlin 2017). If, on the other
hand, the interactions are purely secular, such a connec-
tion cannot be established3. Therefore, understanding
the physics of P9-KBO coupling can offer a more com-
plete interpretation of the extant observational dataset,
and may yield an avenue towards further constraining
the astronomical search for Planet Nine.

The third, and final reason for this study is purely
academic. While the exploration of the circular re-
stricted three-body problem (as a paradigm for inter-
actions between planets and small bodies in the solar
system) dates back multiple centuries (Laplace 1799;
Poincaré 1902), its highly elliptical counterpart remains
much more scarcely understood (see e.g. Beaugé et al.
2006; Michtchenko et al. 2006; Pichierri et al. 2017). In-
deed, a well-formulated theory for gravitational coupling
between a planet and a test particle in the severe orbit-
crossing regime does not currently exist. As a result, a
perturbative study of P9 dynamics can yield interesting
insights into the general mathematical structure of inter-
actions among highly excited orbits. Such a framework
would have considerable applications beyond the prob-
lem at hand, including the characterization of the re-

2 We note that the existence of a trans-Neptunian planet at
an orbital separation of a few hundred AU was first proposed by
Forbes (1880).

3 The process of orbital averaging inherent to secular perturba-
tion theory removes all information related to the mean anomalies
of the interacting bodies (Morbidelli 2002).
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Fig. 1.— Current observational census of the distant Kuiper belt.
Thirteen known objects with semi-major axes greater than 250 AU
and perihelion distance greater than 30 AU are shown in physical
space, and are color-coded in accord with their dynamical class, as
dictated by the Planet Nine hypothesis. Orbits belonging to the
primary longitude of perihelion cluster (inferred to be apsidally
anti-aligned with the orbit of Planet Nine) are shown in purple.
Orbits that are diametrically opposed to the primary cluster (pre-
sumed to be apsidally aligned with the orbit of Planet Nine) are
shown in green. The outlying object that does not correspond to
either population is shown in gray. Each orbit is further labeled
by its scaled Runge-Lenz vector, which is color-coded in the same
way.

markable dynamical states of highly eccentric, resonant
exoplanets (Lee 2004; Tan et al. 2013).

Before delving into calculations, we delineate a list of
specific questions we wish to answer in this work.

• What role (if any) do resonant interactions play
within the dynamical evolution induced by Planet
Nine? If resonances are prevalent, what or-
der/multiplet harmonics dominate the dynamics,
and what are their characteristic widths?

• What role (if any) do secular interactions play
within the dynamical evolution induced by Planet
Nine? If dominant, how are close encounters
avoided on nearly co-planar, anti-aligned orbits?
Moreover, if resonant interactions are relevant to
the Planet Nine hypothesis, why does the purely
secular phase-space portrait provide a good match
to the results of numerical simulations?

• What parameters determine the critical semi-
major axis corresponding to the transition
between randomized and clustered longitudes of
perihelion? What physical effect controls this
transition?

• What is the qualitative behavior of inclination dy-
namics within the framework of P9-driven evolu-
tion? What dynamical process allows some of the
objects to acquire exceptionally high inclinations
in the distant Kuiper belt?

We take these questions as an approximate guide to
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Fig. 2.— Purely secular dynamics induced upon Kuiper belt objects by Planet Nine. Each panel is labeled by the corresponding value
of the particle’s semi-major axis, and depicts contours of the doubly averaged Hamiltonian (1) in eccentricity - longitude of perihelion
(measured relative to the apsidal line of Planet Nine) space. In panels characterized by a > 250 AU, secular equilibria corresponding to
both apsidally aligned (∆$ = 0) as well as anti-aligned (∆$ = 180 deg) configurations emerge, and are segregated by tangential collision
curves, shown as thick curves. Note that in spite of the apparent smoothness of the level curves of the averaged Hamiltonian surrounding
the anti-aligned equilibrium points, this region of phase-space describes orbital configurations that are not protected from close encounters,
and thus entails a long-term unstable orbital evolution. Moreover, notice that only apsidally aligned configurations that are close to the
∆$ = 0 equilibrium points are protected from close encounters by the geometrical collinearity of the orbits.

the logic of the paper, which is structured as follows.
In section 2, we revisit a purely secular description of
P9-induced orbital evoluition, carrying out the averag-
ing procedure in closed form. In section 3, we consider
a pair of idealized N -body simulations and outline the
key differences between numerical experiments and pure
secular theory. In section 4, we present a semi-analytical
theory of resonant P9-KBO interactions, and elucidate
secular dynamics embedded within mean-motion reso-
nances as the primary driver of apsidal confinement of
distant KBOs. Subsequently, we discuss the onset of
large-scale inclination oscillations of long-period bodies
in section 5. We then re-examine the existing observa-
tional data in light of the aforementioned theoretical de-
velopments in section 6. We summarize and discuss the
implications of our results in section 7. A brief analy-
sis of long-term stable, but apsidally unconfined orbits is
presented in the appendix.

2. PURELY SECULAR DYNAMICS

We begin our study of Planet Nine-induced dynam-
ics within the framework of purely secular perturbation
theory. In Batygin & Brown (2016a), our preliminary
exploration of secular dynamics relied on an octupole or-
der expansion of the gravitational potential (Kaula 1962;
Mardling 2013), that implicitly assumed that the or-
bits under consideration do not cross. Following Beust
(2016), here we abandon the series-expansion approach
to modeling P9-KBO coupling, and carry out the phase-
averaging procedure in closed form.

As in Batygin & Brown (2016a); Beust (2016), we as-
sume coplanarity, and model the mean-field effects of the
known giant planets neglecting their eccentricities. Fur-

ther, we choose to work in a slowly rotating coordinate
frame, that co-precesses with Planet Nine’s perihelion
(the corresponding contact transformation is spelled out
in Batygin & Brown 2016a). The governing (doubly av-
eraged) Hamiltonian of a test particle under planetary
perturbations then has the form:

Hs = −1

4

GM�
a

1(
1− e2

)3/2 8∑
j=5

mj a
2
j

M� a2

+ $̇9

√
GM�a

(
1−

√
1− e2

)
− 1

4π2

∮ ∮ Gm9

|r− r9|
dλ dλ9, (1)

where G is the gravitational constant, M� is the mass
of the sun, r is the position vector, λ is the mean lon-
gitude, a is semi-major axis, e is eccentricity, and $ is
the longitude of perihelion. All quantities pertaining to
the four canonical giant planets are labeled with indexes
5− 8, while the values corresponding to Planet Nine are
denoted with the subscript 9. The unlabeled variables
correspond to the Kuiper belt object. Finally, Planet
Nine’s orbit-averaged precession rate is given by the ex-
pression4:

$̇9 =
3

4

√
GM�
a39

1(
1− e29

)2 8∑
j=5

mj a
2
j

M� a29
. (2)

The three terms present in equation (1) have sim-
ple physical interpretations. The first term governs the

4 Note that there is a typo in the corresponding expression in
Batygin & Brown (2016a).
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secular advance of the KBO’s perihelion due to the
phase-averaged gravitational potential of Jupiter, Sat-
urn, Uranus, and Neptune (in direct parallel with equa-
tion 2). The second term accounts for the fact that the
reference frame is slowly rotating. The third term gov-
erns secular P9-KBO interactions. Note that the indirect
part of the disturbing potential is by default entirely av-
eraged out within the framework of secular theory, and
need not be accounted for (Morbidelli 2002).

The only pair of dynamical variables present in Hamil-
tonian (1) is (e,∆$), meaning that the system is inte-
grable. In other words, contours of the numerically aver-
aged function (1) fully encapsulate the accompanying or-
bital evolution. Figure (2) shows the secular phase-space
portraits of the system, projected into e − ∆$ space,
for a = 50, 150, ..., 550 AU, adopting P9 parameters from
Batygin & Brown (2016a) (specifically, a9 = 700 AU,
e9 = 0.6 and m9 = 10m⊕). This figure can be readily
compared with Figure (4) of Batygin & Brown (2016a),
and confirms that the purely secular portrait provides a
good match to the numerically computed portraits in the
same dynamical regime (Beust 2016).

On all panels denoted by a > 250 AU, e − ∆$ space
is characterized by two stable equilibrium points: one at
∆$ = 0 and another at ∆$ = 180 deg. On each dia-
gram, the two libration regions surrounding these fixed
points are separated by a solid curve, which corresponds
to a tangential configuration of the KBO and P9 orbits.
Note further that on these tangential contact curves, the

derivatives of the Hamiltonian are discontinuous (i.e. Hs

is locally class C0), signaling a breakdown of the secular
framework (Gronchi 2002).

A simple examination of the contours of Hs depicted
on Figure (2) reveals that KBOs initialized on nearly
Neptune-crossing orbits (immediately below horizontal
lines labeled by q = a8) will suffer drastically different
secular evolutions depending on their starting value of
∆$. Bodies initially close to ∆$ ∼ 0 will be driven
onto the tangential orbit-crossing curves through apsi-
dal precession, and will eventually be removed from the
system by recurrent close encounters with Planet Nine.
On the other hand, objects initialized at ∆$ ∼ π settle
onto secular trajectories that encircle that anti-aligned
equilibrium, and never encounter the tangential collision
curves. Thus, the dynamical lifetimes of apsidally anti-
aligned objects can be näıvely envisioned to be longer
than their aligned counterparts, and in time, a cluster of
exclusively anti-aligned orbits should be carved out by
Planet Nine.

We note further that there is an island of stable ap-
sidal libration around ∆$ = 0 that avoids crossing the
tangential configuration curve and is thus protected from
close-encounters. However, the eccentricities along these
protected orbits are moderate and the corresponding per-
ihelion distances are large. This means that even if KBOs
somehow came to occupy these islands of stability, they
would be difficult to detect observationally.

With this picture in mind, it is tempting to affirm that
the agreement between theory and simulation is satis-
factory, and proceed forward within the purely secular
framework. This is however a misconception, facilitated
by the apparent smoothness of the secular phase-space
portraits shown in Figure (2). In particular, the fact that

the contours ofHs do not show any kinks within the apsi-
dally anti-aligned domain is simply a consequence of the
integrability of the non-tangential singularity (Thomas
& Morbidelli 1996; Gronchi & Milani 1998), and does
not mean that the system can elude collisions. Instead,
recalling that the physical setup of the orbits is planar,
it is trivial to demonstrate that under the assumption
of uncorrelated Keplerian motion, all objects entrained
in the apsidally anti-aligned configuration with Planet
Nine would suffer close-encounters on timescales much
shorter than the age of the solar system. Therefore,
despite giving the illusion of agreement with N -body
simulations, pure secular theory predicts that the entire
distant Kuiper belt is dynamically unstable, and should
have been cleared out on a timescale comparable to the
orbital precession time.

Contrary to this view, published numerical experi-
ments reveal that particles residing deep within the cores
of the anti-aligned libration regions of Figure (2) remain
stable over the multi-Gyr lifetime of the solar system
(Batygin & Brown 2016a; Brown & Batygin 2016). This
disparity suggests that secular theory alone is unlikely
to represent a full dynamical description of P9-driven
evolution, and an additional stabilizing mechanism is at
play in the simulations. Let us now examine this point
further.

3. NUMERICAL SIMULATIONS

To quantify the discrepancy between published simula-
tions and pure secular theory, we carry out a pair of sim-
plified numerical experiments that mirror those reported
in (Batygin & Brown 2016a; Brown & Batygin 2016).
In particular, we evolve an initially axisymmetric disk
of 6,000 eccentric test-particles with a ∈ (150, 750) AU
and q ∈ (30, 36) AU, under the influence of the phase-
averaged potential of the four inner giants as well as
Planet Nine with (a9, e9) = (700 AU, 0.6) and (a9, e9) =
(600 AU, 0.5). The test particles are initialized with a
null vertical velocity dispersion and thus remain confined
to Planet Nine’s orbital plane throughout the simulation.

Unlike the simulation suite of Batygin & Brown
(2016a); Brown & Batygin (2016); Millholland & Laugh-
lin (2017); Becker et al. (2017) where Neptune was mod-
eled directly, or that of Batygin & Brown (2016b) where
the Keplerian motion of all four inner giants was resolved,
here we emulate the effects of Jupiter, Saturn, Uranus
and Neptune with an effective quadrupolar gravitational
moment of the Sun:

J2 =

(
3 cos2(i9)− 1

4

) 8∑
j=5

mj a
2
j

M�R2
, (3)

setting the inner absorbing radius to R = 20 AU. This
idealization is employed specifically to avoid contaminat-
ing P9-induced KBO evolution with chaotic dynamics
that arise from scattering off of Neptune, and to yield
the closest point of comparison between numerical and
semi-analytical results. Moreover, here we will assume
that the inclination of Planet Nine relative to the Laplace
plane of the canonical giant planets is sufficiently small
to approximate cos(i9) ≈ 1, while keeping in mind that
ẑ−axis of our coordinate system coincides with the or-
bital plane of Planet Nine.

To carry out the simulations, we utilized the mercury6
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Fig. 3.— A histogram summarizing the orbital distribution of simulated particles with dynamical lifetimes that exceed 4 Gyr. Beyond
a critical orbital period ratio (P/P9 & 0.1 for a9 = 700 AU, e9 = 0.6 and P/P9 & 0.15 for a9 = 600 AU, e9 = 0.5), all surviving members
of the distant scattered disk reside in mean-motion resonances with Planet Nine, and derive their long-term stability from the associated
phase-protection mechanism. The final orbital configurations of distant bodies sculpted by Planet Nine are similar in both numerical
experiments, and show the onset of clustering in longitude of perihelion beyond the 3:1 mean motion resonance. Correspondingly, bins
containing particles locked in a stable pattern of anti-aligned apsidal libration are shown in black, while bins containing objects with
circulating longitudes of perihelion are shown in gray. The commensurabilities possessing the largest number of apsidally confined particles
are indicated with blue triangles.

gravitational dynamics software package (Chambers
1999). The integrations were performed using the hybrid
Wisdom-Holman/Bulirsch-Stoer algorithm (Wisdom &
Holman 1992; Press et al. 1992), with a time-step of
∆t = 3, 100 days (i.e. 1/10 th of Uranus’ orbital period),
and spanned 4 Gyr. Any particle that attained a radial
distance of r < R or r > 10, 000 AU was removed from
the simulations.

Within the context of these idealized numerical exper-
iments, all long-term stable particles retain nearly con-
stant semi-major axes throughout the integration, and
Figure (3) depicts an orbital histogram of the surviv-
ing bodies. Bins shown in black correspond to apsidally
confined objects (defined by |∆$ − 180 deg | 6 90 deg
throughout the simulation), while those shown in gray
denote particles that are long-term stable, but experience
apsidal circulation. We note that here, the gray bins are
stacked on top of the black bins, such that the relative
size of gray and black components of each column is a
measure of the contamination of apsidally confined pop-
ulation of objects (at a given semi-major axis) by those
undergoing perihelion circulation.

A strong propensity towards apsidal clustering for
P/P9 & 1/3 is clearly evident in both simulations. How-
ever, it is also important to note that the same orbital
periods (e.g. those corresponding to the 3:1, 2:1, and 1:1
commensurabilities in Figure 3) can be simultaneously
occupied by apsidally circulating and librating orbits.
This means that even within the framework of highly
idealized treatment of P9-induced dynamics, the cluster-
ing of the longitude of perihelion beyond a critical semi-
major axis is not perfectly strict, and the existence of
objects that do not conform to the general anti-aligned
orbital pattern is an expected consequence of the model
(Shankman et al. 2017).

In addition to the already established tendency to-
wards orbital clustering with increasing orbital period,

it can be clearly seen in Figure (3) that all long-lived
objects which exhibit perihelion confinement have semi-
major axes that correspond to mean-motion commensu-
rabilities with Planet Nine. Particularly, the 1:1, 3:2, 2:1,
and 5:2 resonances contain the largest populations of ap-
sidally clustered KBOs in both simulations5. This point
undercuts a key difference between the results of N -body
simulations and pure secular theory, and demonstrates
that (at least within the framework of a planar physical
setup) distant KBOs derive their long-term orbital sta-
bility from the phase-protection mechanism inherent to
mean-motion resonances.

The typical dynamical evolutions of bodies trapped in
the four aforementioned resonances are shown in Fig-
ure (4). Specifically, the left and middle panels depict
the evolutions of orbital eccentricities and apsidal lines.
On timescales of order ∼ 0.1 − 1 Gyr, orbital eccentric-
ities experience considerable oscillations in concert with
librations of ∆$. This facilitates a periodic regression of
the KBO perihelion distance, generating dynamically de-
tached (Sedna-type) orbits (Gladman et al. 2002; Brown
et al. 2004).

Of particular importance is the behavior of the reso-
nant angles:

ψres = k λ9 − ` λ− (k − `)$,
φres = k λ9 − ` λ− (k − `)$9, (4)

where k and ` are integers (note that for |k−`| > 1, addi-
tional resonant harmonics related to these angles through
∆$ exist). On the right panels of Figure (4), ψres is plot-
ted in green and φres is plotted in black. The actual li-
brations of φres and ψres are short-periodic (as portrayed

5 We note that these simulations are not intended to represent
a full exploration of the resonant capture probabilities within the
context of the Planet Nine hypothesis. A more complete estimation
these probabilities is presented in a companion paper (Bailey et al.
2017).
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by the inset within the top-right panel of Figure 4) and
their amplitudes correspond to the thickness of the green
and black “bands.” Meanwhile, the long-periodic oscilla-
tions of these angles are mere reflections of the librations
of ∆$, which modulate the locations of the resonant
equilibria associated with φres and ψres.

The fact that the amplitude of long-periodic oscilla-
tions of φres is much smaller than that of ψres for orbits
that exhibit libration in ∆$, demonstrates that the reso-
nant multiplets containing φres represent a better approx-
imation of the real dynamics than those containing ψres.
In particular, if the Hamiltonian depended only on φres,
this angle would have no long-periodic oscillations while
ψres (being equal to φres + (` − k) ∆$) would oscillate
with the amplitude and period of |(`− k)|∆$. The op-
posite would be true if the Hamiltonian dependent only
on ψres. Thus the relative amplitudes of long-periodic

oscillations of the these angles are inversely correlated to
the relative strengths of the corresponding terms. Ac-
cordingly, in our analytic approach in the next section
we will consider φres as a reference angle, in contrast to
Malhotra et al. (2016) and Beust (2016), who considered
ψres instead.

Only containing the longitude of perihelion of Planet
Nine and not that of the Kuiper belt objects themselves,
the (short-periodic) libration of φres drives the oscilla-
tion of the particle’s semi-major axis but does not af-
fect the evolution of its eccentricity. Thus, the libra-
tion in φres, sometimes referred to as “corotation” res-
onance, already implies a certain disconnect among the
degrees of freedom related to the particle’s semi-major
axis and its eccentricity. Moreover, the striking sepa-
ration of timescales associated with resonant (φres − a)
dynamics and secular (e−∆$) dynamics motivates the
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construction of the semi-analytical model that will fol-
low, based on the adiabatic approach.

The dominant dependence of the resonant dynamics on
φres, as opposed to another harmonic that contains $ in
its critical argument, is central to maintaining apsidally
anti-aligned libration of the orbits. In fact, long-term
stable particles whose resonant dynamics is driven by any
angle other than φres exhibit circulation of the longitude
of perihelion, and correspond to objects denoted as gray
bins in Figure (3). Although characterizing the dynamics
in this transitionary semi-major axis range is not the
primary purpose of this study, we present a brief analysis
of this mode of orbital evolution in the appendix.

4. SEMI-ANALYTICAL THEORY

As shown in the previous section, all surviving mem-
bers of the synthetic scattered disk that exhibit persis-
tent apsidal anti-alignment with Planet Nine’s orbit are
locked into mean-motion resonances with P9. The pur-
pose of the following analysis is thus to explain this be-
havior from semi-analytic grounds. To achieve this goal,
we consider the isolated resonant behavior first. As in
section (2), we will abandon traditional methods of ce-
lestial mechanics based on series-expansions, and cast our
analysis of the governing Hamiltonian in closed form.

4.1. Mean Motion Resonances

In order to carry out the averaging process numerically
and elucidate the φres − a resonant dynamics, we set up
a rigorous Hamiltonian approach to the problem. As
is typical for the planar restricted three body problem,
the canonical Poincaré action-angle variables for the test
particle are (Murray & Dermott 1999):

Λ =
√
GM� a λ =M+$

Γ =
√
GM� a

(
1−

√
1− e2

)
γ = −$ (5)

where M is the mean anomaly. In terms of these vari-
ables, the Hamiltonian of the problem is (Morbidelli
2002)

Hr = −1

2

(GM�
Λ

)2

− Gm9

(
1

|r− r9|
− r · r9
|r9|3

)
. (6)

The vector r can be written as a function of the canon-
ical variables (5). Similarly, r9 can be expressed as a
function of the parameters a9, e9, which are assumed to
be fixed in time, as well as the angles λ9 and $9, which
are assumed to advance with fixed frequencies, n9 and
$̇9 respectively. Thus, Hamiltonian (6) depends on time
through these two planetary angles.

In order to remove explicit time dependence from equa-
tion (6), we extend the phase space by two degrees of
freedom. That is, we consider λ9 and γ9 = −$9 as
independent variables, with conjugated actions Λ9 and
Γ9. Correspondingly, we add the term (n9 Λ9 − $̇9 Γ9)
to expression (6), making the Hamiltonian autonomous.
Of course, in doing so we do not alter the dynam-
ics in any way, since dλ9/dt = ∂Hr/∂Λ9 = n9 and
d$9/dt = −dγ9/dt = −∂Hr/∂Γ9 = $̇9.

We now denote the mean motion of the particle by
n = G2M2

�/Λ
3 and assume that there is a resonance

of the kind k n9 − ` n = 0 for some integers k and `.
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Fig. 5.— Resonant phase-space portraits of the four most pop-
ulated mean-motion commensurabilities, projected into a − φres
space. The color scale and the black contours correspond to level
curves of the singly averaged Hamiltonian (10), while the verti-
cal black lines denote collision curves. Resonant contours of the
Hamiltonian that come into contact with the collision curves are
shown as thick purple lines, and thereby inform the widths of the
corresponding resonances. These phase-space diagrams adopt our
fiducial P9 parameters and assume that the Kuiper belt objects are
characterized by a fixed value of Γ that corresponds to q = 35 AU
at nominal resonance and ∆γ = π. The red curves that encircle
the elliptic equilibria in each panel represent the a − φres evolu-
tion of the particles shown in Figure (3) near ∆$ = π, and signal
excellent agreement with theory.
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encounters with Planet Nine. The depicted portraits were computed assuming a value of Γ that corresponds to the equilibrium eccentricity
of the resonant-secular phase-space portrait, and their (e,∆$) coordinates are shown with open circles on Figure (7).

It is then appropriate to make the following canonical
transformation6

Λ′ = Λ/` φ′res = −φres
Λ′9 = Λ9 + (k/`) Λ λ′9 = λ9

Γ′ = Γ ∆γ = γ − γ9 = −∆$

Γ′9 = Γ9 + Γ + ((k − `)/`) Λ γ′9 = γ9.
(7)

The unperturbed part of the Hamiltonian (the term
independent of m9) becomes:(

Hr

)
kep

= −1

2

(GM�
Λ

)2

+ n9(Λ′9 − kΛ′)

− $̇9 (Γ′9 − Γ− (k − `) Λ′). (8)

Because ∂(Hr)kep/∂Λ′ = ` n− k n9 = 0 there is only one
fast angle in the Hamiltonian, and it is λ′9. Thus, the
perturbation can be averaged over this angle, leading to(
Hr

)
pert

= −Gm9

2π `

∫ 2π`

0

(
1

|r− r9|
− r · r9
|r9|3

)
dλ9. (9)

It is easy to see from d’Alembert rules, that the aver-
aged Hamiltonian can depend only on two angles: φ′res
and ∆γ. Thus, Λ′9 and Γ′9 are constants of motion and
can be dropped. The Hamiltonian now comprises a two
degree of freedom system, and is not integrable. How-
ever, we note that the degree of freedom in (Γ′,∆γ) is
characterized by a frequency of order ∝ m9/M�, and is
slow relative to the other degree of freedom in (Λ′, φ′res),
whose frequency is of the order of ∝

√
m9/M� (Henrard

& Caranicolas 1990).
Taking advantage of the aforementioned separation of

timescales between the resonant and secular dynamics,
we may evaluate the phase-space portrait associated with
the resonant Hamiltonian in the adiabatic approxima-
tion, by freezing the evolution of the KBO’s eccentricity
and apsidal line relative to the major axis of Planet Nine
(Wisdom 1985). In particular, we compute the function

Hr = −GM�
2 a

− n9
(
k

`

)√
GM� a

6 This contact transformation arises from a type-2 generating
function of the form F2 = −Λ′(kλ9 − `λ + (k − `)γ9) + Λ′9(λ9) +
Γ′(γ − γ9) + Γ′9(γ9).

− Gm9

2π `

∫ 2π`

0

(
1

|r− r9|
− r · r9
|r9|3

)∣∣∣∣
φres

dλ9, (10)

on a (φres − a) grid, setting the quantities Γ and ∆γ to
specific values. We note that unlike the doubly averaged
Hamiltonian (1), here the averaging process is carried
out only over λ9, under the restriction of the resonant
relationship dictated by equation (4). Moreover, the in-
direct part of the disturbing function must be retained
in this case.

Of particular interest to the problem at hand are the
resonant phase-space portraits of KBOs in apsidally anti-
aligned configurations with respect to Planet Nine, with
perihelion distances characteristic of typical scattered
disk objects (i.e. q ∼ a8). Suitably, adopting ∆γ = π
and a value for Γ that corresponds to q = 35 AU at
a = (`/k)2/3 a9 for the frozen degree of freedom, we have
computed the averaged Hamiltonian (10) adopting pa-
rameters relevant to the 1:1, 3:2, 2:1, and 5:2 MMRs.
The corresponding φres − a diagrams are presented in
Figure (5), on which we also plot N−body trajectories of
particles shown in Figure (4) in red. It is clear that irre-
spective of the specific resonance argument, the topology
of Hres is keenly reminiscent of a pendulum-like struc-
ture, that has been cut into two separate domains by
vertical lines. These lines depict collision curves - i.e.
values of φres for which the averaging process fails due
to the inherent singularity. Importantly, this means that
a trajectory residing within one domain cannot migrate
to the other domain without compromising the phase-
protection mechanism of mean-motion resonances.

Within each of the phase-space portraits shown in Fig-
ure (5), one of the two domains contains a ∞-shaped
separatrix characterized by a hyperbolic equilibrium at
its center, while the other domain possesses an elliptic
fixed point at its core. Numerical integrations reported in
the previous section have shown that resonant trapping
typically occurs into the domain that does not host the
separatrix. That is, even though objects that exhibit sta-
ble libration of φres 180 degrees away from those shown
in Figure (4) do exist, they are very rare and we will
not consider their evolution in detail. We further note
that strictly speaking, phase-space evolution depicted in
Figure (5) implies that the libration of φres does not rep-
resent a formal resonance because it is not enclosed by
a separatrix (Delisle et al. 2012). This point is however



9

0.25

�$ (deg)

e

0

0.5

0.75

1

0 90 180 270 360

0.25

0

0.5

0.75

1

0 90 180 270 360

e

�$ (deg)

1:1 MMR

e 0.5

0.75

1

0

0.25

0 90 180 270 360
�$ (deg)

2:1 MMR

0.25

0

0.5

0.75

1

0 90 180 270 360

e

�$ (deg)

3:2 MMR

5:2 MMR

m9 = 10m�

a9 = 700AU

e9 = 0.6

collision locus

N-body simulation

Fig. 7.— Eccentricity-perihelion diagrams showing long-term stable secular evolution facilitated by phase protection arising from φres-
type resonances. For resonances other than 1:1, the e−∆$ domain is restricted by a collision locus, which arises from engulfment of the
stable resonant equilibrium shown in Figure (5) by collision curves. Contours of the singly averaged resonant-secular Hamiltonian (12)
are shown as black lines that follow the background color-scale, and N -body trajectories of particles shown in Figure (4) are over-plotted
as orange curves. The clear agreement between semi-analytic perturbation theory and numerical experiments demonstrates that although
the long-term survival of distant Kuiper belt objects is enabled by resonant interactions, the clustering of longitudes of perihelion and
dynamical detachment of orbits from Neptune arise from secular perturbations embedded within the resonances. The (e,∆$) coordinates
of resonant phase-space portraits depicted in Figure (6) are shown with open circles on the panel corresponding to the 3:2 MMR.

of little practical consequence, since the phase-protection
facilitated by this pseudo-resonance patently represents
a stabilizing mechanism for the simulated Kuiper Belt
objects.

4.2. Secular Dynamics Inside MMRs

Having characterized the evolution of the fast degree of
freedom in the preceding subsection, we now consider sec-
ular dynamics facilitated by resonant interactions. Gen-
erally speaking, in order to compute a e − ∆$ phase-
space diagram, we must specify the state of a− φres dy-
namics everywhere on the domain. To do so, we once
again rely on the principle of adiabatic invariance.

Because the period of oscillation of ∆$ greatly ex-
ceeds that of φres, we can define the adiabatic invariant

(Neishtadt 1984)

J =

∮
Λ′ dφ′res = −1

`

∮
Λ dφres, (11)

associated with motion in the a− φres plane. Physically,
this quasi-integral corresponds to the phase-space area
occupied by the trajectory, and is conserved to an ex-
cellent approximation, as long as the system does not
encounter any criticality (i.e. hyperbolic fixed points,
collision curves, etc; Henrard 1993). As can be seen
from Figure (4), bodies entrained in MMRs with P9 can
have substantial libration amplitudes that are in essence
determined by the state of the system at t = 0. For
definitiveness, here we ignore this complication and in-
stead assume that the libration amplitude is null, mean-
ing J = 0. From a computational point of view, the
J = 0 assumption is simplifying, since rather than find-
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ing the correct phase-space trajectory in a − φres plane
(specified by a given non-zero value of J ) at every combi-
nation of e and ∆$, we instead suppose that the system
is adiabatically confined to the resonant fixed point, and
carry out the averaging process under the resonant equi-
librium condition (Morbidelli & Moons 1993).

Because the resonant angle of interest φres only con-
tains the longitude of perihelion of Planet Nine and not
that of the KBO (equation 4), the resonant equilibrium
in a− φres plane always resides on the aeq = (`/k)2/3 a9
line. On the contrary, the equilibrium value of φres itself
shifts away from φres = 0 deg or φres = 180 deg, in con-
cert with oscillations of ∆$. Correspondingly, in order
to compute the equilibrium value of φres as a function of
e and ∆$, we evaluated the function Hres (equation 10)
along the a = aeq axis at every grid point on the (e,∆$)
plane, and found its local maximum.

Within certain regions of the e − ∆$ diagram, the
collision curves, shown as black vertical lines on Figure
(5), can approach one-another such as to shrink the do-
main within which the resonant trajectory resides. This
process is demonstrated in Figure (6), which shows a se-
ries of resonant a − φres diagrams corresponding to the
3:2 MMR at various values of ∆$. Moreover, for spe-
cific values of e and ∆$, the two collision curves can
cross, engulfing the pseudo-resonant equilibrium point,
which we assume the system occupies. In other words,
the phase-space portrait in a−φres dictates a locus on the
e − ∆$ plane that cannot be crossed without compro-
mising the phase-protection mechanism inherent to mean
motion commensurabilities7. Consequently, even prior to
computing the secular dynamics explicitly, we can iden-
tify a restricted domain on e − ∆$ plane, bounded by
the collision locus, that can be stably explored by an an
orbit trapped at the center of a mean motion resonance.

Generally speaking, the admissible domain shrinks as
the integer (k−`) increases. Accordingly, the full e−∆$
plane is stable for the 1:1 MMR, but the stability region
tightly confined about the e ∼ 0.85, ∆$ ∼ π point for
the 5:2 resonance. For clarity, here we only compute the
secular diagram within this stability domain.

Expressing λ as a function of λ9 through the pre-
computed stationary value of φres, we calculate the aver-
aged Hamiltonian

Hrs =− 1

4

GM�
a

1(
1− e2

)3/2 8∑
j=5

mj a
2
j

M� a2

+ $̇9

√
GM�a

(
1−

√
1− e2

)
− Gm9

2π `

∫ 2π`

0

(
1

|r− r9|
− r · r9
|r9|3

)∣∣∣∣
φres

dλ9 (12)

on the admissible domain. Figure (7) shows the con-
tours of the numerically averaged function (12) for the
1:1, 3:2, 2:1 and 5:2 MMRs (recall that corresponding
resonant phase-space portraits are shown in Figure 5).
In addition to semi-analytic level curves of Hrs, depicted

7 We note that the resonant-secular diagrams depicted in Figure
(7) strictly correspond to resonant orbits that encircle the elliptic
equilibrium points in Figure (5). The comparatively less common
orbits that reside in the domain occupied by the∞-shaped separa-
trix, are thus subject to a quantitatively different secular evolution.

with black lines and the background color-scale of the
Figure, we have also over-plotted the e−∆$ evolutions
of the four particles emphasized in Figure (4) as orange
curves. Clearly, the agreement between semi-analytic re-
sults and N -body simulations is satisfactory, and any
mild quantitative discrepancies can likely be attributed
to our assumption of null resonant libration amplitude
in the perturbative calculation.

Taken together, these results yield the following in-
sight into the dynamical evolution of distant Kuiper belt
objects induced by Planet Nine. First and foremost,
long-term dynamical stability is facilitated by capture
into mean-motion resonances. Objects that are not (for-
tuniously) scattered into mean motion commensurabil-
ities with Planet Nine initially, are removed from the
system by way of close encounters. Meanwhile, due to
the specific (“corotation”) nature of the resonant mul-
tiplets that guide the resonant motion, the evolution of
distant KBO eccentricities and longitudes of perihelion
are dominated by secular dynamics that ensue inside res-
onances. In turn, this separation between the degrees of
freedom qualitatively explains why purely secular phase-
space portraits shown in Figure (2) approximately match
the results of large-scale numerical simulations.

4.3. Critical Semi-Major Axis

In light of the analysis presented above, it is evident
that even though the purely secular treatment of dynam-
ics outlined in section (2) does not formally account for
the full dynamical evolution observed within N -body cal-
culations, it does provide a satisfactory approximation
for e−∆$ evolution (Beust 2016). Accordingly, we now
take advantage of this simplified framework to explore
the dependence of the critical semi-major axis, acrit (be-
yond which apsidal confinement ensues) on the parame-
ters of Planet Nine.

As a proxy for acrit, we adopt the minimum value of
a at which the anti-aligned secular equilibrium exists on
the secular e − ∆$ diagram8. Practically, we calculate

this quantity by computing Hs as a function of e along
the ∆$ = π line, gradually increasing a from 50 AU, and
noting the first instance where a local maximum appears
between e = 0 and e = 1. Correspondingly, this calcula-
tion is carried out on a (a9, e9) grid for a given value of
m9.

We have computed acrit as a function of a9 and e9
for m9 = 5m⊕, m9 = 10m⊕, and m9 = 20m⊕. Fig-
ure (8) depicts curves corresponding to acrit = 150 AU,
acrit = 200 AU, and acrit = 250 AU for these choices of
m9. As can be clearly seen in this figure, acrit exhibits
a rather mild dependence of m9, and follows a shallow
relationship between e9 and a9.

It is important to note that observationally, the spe-
cific value of acrit is not unequivocally determined. It
is indeed possible to demonstrate that the clustering of
orbits with a & 250 AU in their respective longitudes of
perihelion ($) is statistically significant (Brown 2017).
However, given that the confinement in the argument of
perihelion (ω) may persist down to a ∼ 150 AU (Tru-
jillo & Sheppard 2014), it is possible that anti-aligned

8 For our nominal parameters (i.e. a9 = 700 AU, e9 = 0.6,
m9 = 10m⊕), this proxy yields acrit ≈ 200 AU, in good agreement
with simulations.
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Fig. 8.— Critical semi-major axis corresponding to a transition
from randomized to apsidally clustered regime of KBO dynamics.
In light of the observational ambiguity related to the specific value
of acrit, here we show contours corresponding to acrit = 100, 150,
and 250 AU as functions of a9, and e9, for m9 = 5 (green), 10
(blue), and 20m⊕ (red). The calculation is carried out in the
secular approximation, and assumes that Planet Nine’s inclination
is not sufficiently large to alter the e−∆$ dynamics appreciably.

dynamics in fact ensues beyond a > 150 AU, and the ob-
served $ distribution in the 150 < a < 250 AU range is
contaminated by metastable objects residing within the
apsidally aligned regions of the e−∆$ diagram. While
perfectly plausible, this scenario is not as strongly sup-
ported in a raw statistical sense by the current dataset
(Brown 2017; Shankman et al. 2017), leaving some am-
biguity as to where in the 150 < a < 250 AU interval the
true value of acrit resides.

Whatever the exact value of acrit may be, it is worth
noting that P9 parameters within N -body simulations
that were found to match the observational data with
comparatively high probability by Brown & Batygin
(2016) all lie between the acrit = 150 AU and acrit =
250 AU contours in Figure (8). In other words, these
contours delineate a region of orbital element space that
yields simulation results that compare well with the real
solar system. At the same time, the semi-analytic calcu-
lations presented herein do not suffer from limitations in
resolution (i.e. particle count) inherent to numerical ex-
periments, and therefore likely inform a broader range of
acceptable P9 parameters than was reported in Brown &
Batygin (2016). Exploring this parameter range with an
expanded suite of high-resolution (N � 5000) N -body
simulations constitutes an appealing avenue for future
development of the Planet Nine hypothesis.

5. SPATIAL DYNAMICS

Up until this point, we have considered the orbital evo-
lution induced upon the Kuiper belt by Planet Nine, un-
der the strict assumption of coplanarity. As already dis-
cussed above, this assumption leads to somewhat ideal-
ized behavior, and fails to capture three important as-
pects of the dynamics that emerge within the framework
of full-fledged N -body simulations. First, rather than ex-
hibiting stable resonance capture and remaining locked
to a particular commensurability for the duration of the
solar system’s lifetime, real Kuiper belt objects expe-
rience chaotic semi-major axis evolution, and therefore
explore a wide range of orbital period ratios with Planet
Nine (this is evident, for example, in Figure 11 of Mill-

holland & Laughlin 2017). Second, in addition to con-
finement in the longitude of perihelion, real long-period
KBOs exhibit a clustering in the longitude of ascend-
ing node as well, which jointly leads a clustering in the
argument of perihelion, ω = $−Ω. Third, N -body sim-
ulations of Batygin & Brown (2016a) show that Kuiper
belt objects initially residing close to P9’s orbital plane
can occasionally undergo high-amplitude oscillations of
the inclination, leading to generation of retrograde KBOs
(Batygin & Brown 2016b). Accordingly, the goal of this
section is to characterize these features qualitatively.

5.1. The Anti-Aligned Population

To carry out the exploration of non-planar dynam-
ics within the framework of our simplified model, we
repeated the numerical experiment with a9 = 700 AU
described in section 3, allowing for a small inclination
dispersion among the particles. In particular, initial par-
ticle inclinations were drawn from a half-normal distri-
bution with a standard deviation of σi = 5 deg, while
longitudes of ascending node Ω were assumed to be uni-
formly distributed between 0 and 360 deg. As before,
the simulations are performed in a frame coplanar with
the orbit of Planet Nine (meaning that i9 = 0), and
the Keplerian motion of the four inner giants is averaged
out. Meanwhile, the ecliptic plane is envisioned to be in-
clined with respect to the orbit of P9 by a small amount
(e.g. 10− 20 deg), although the corresponding reduction
in the effective magnitude of the J2 moment (equation
3) is ignored. Remarkably, this simple modification to
the physical setup of the problem is sufficient to approxi-
mately recover the full breadth of the dynamical behavior
observed within more detailed numerical experiments.

Figure (9) shows the orbital evolution of six (uniquely
colored) representative objects, whose orbits remain
roughly confined to the orbital plane of Planet Nine.
The top panel depicts the longitude of perihelion (rel-
ative to the apsidal line of Planet Nine) as a function of
semi-major axis. Clearly, allowing the KBOs to possess
even a small inclination breaks the immutability of mean
motion resonances seen in the strictly coplanar model,
and renders the evolution of the semi-major axes chaotic.
At the same time, the clustering of the orbits in longi-
tude of perihelion persists in spite of irregular semi-major
axis evolution, and indeed, the secular portrait of orbital
eccentricity depicted in the middle panel of the Figure
agrees well with the resonant-secular e − ∆$ diagrams
shown in Figure (7).

We note that although the introduction of a finite in-
clination dispersion is sufficient to drive chaotic mix-
ing in the semi-major axis, its efficiency is underesti-
mated in our simplified model, since stochastic evolution
is driven solely by P9 resonances. In reality, scattering
facilitated by Neptune significantly enhances the rate of
semi-major axis diffusion (particularly during the low-
perihelion phases of the secular cycle), and modifies the
observed behavior on a quantitative level. As a conse-
quence, the results obtained in our semi-averaged simu-
lations depict a somewhat idealized realization of distant
Kuiper belt evolution.

The apsidally clustered resonance-hopping behavior
observed in Figure (9) can be qualitatively understood
within the framework of the semi-analytical theory de-
scribed above. The introduction of a new (i−Ω) degree
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of freedom into the dynamics implies that rather than
being forced by a single secular harmonic, the modula-
tion of the a − φres phase-space portrait is now driven
by two separate angles. This modulation transforms the
collision loci depicted in Figure (7) into fuzzy chaotic
bands because any given point (e,∆$) near the original
collision locus may or may not lead to a collision, de-
pending on the values of i and Ω. To this end, notice
that in Figure (7), the curves showing the secular evo-
lution are essentially tangent to the collision loci, which
means that in a strictly planar physical setup, secular
evolution almost never leads to close encounters between
the particles and Planet Nine (i.e. most of the plot-
ted trajectories don’t intersect the collision loci). On the
other hand, if the collision locus becomes a chaotic band,
many more secular trajectories can infiltrate this irregu-
lar region, and with appropriate values of i and Ω, close
encounters can ensue. When this happens, the particle
enters a stochastic dynamical regime and hops in semi
major axis, until it locks into a new resonance and the
secular dynamics drives it away from the collision locus
of the new resonance. Importantly, this type of behavior
is observed in numerical integrations of real objects un-
der the influence of Planet Nine (Millholland & Laughlin
2017; Becker et al. 2017).

When an object gets fortuitously trapped in some res-
onance (by entering it through the chaotic layer that sur-
rounds the collision curves), its orbital evolution can be
temporarily stabilized by the secular evolution in e and
∆$. In other words, test-particles have the tendency
to exhibit prolonged periods of resonance locking (on
timescales similar to the secular libration period) before
breaking out, and jumping to another commensurabil-
ity. In fact, looking again at Figure (7) and imagining a
chaotic band near each depicted collision locus, it is ev-
ident that the (e,∆$) evolution can drive a body away
from the band at the peaks of the eccentricity cycle of
the 3:2, 5:3 and 2:1 resonances (and also at the bottom
of the eccentricity cycle in the 2:1 resonance). During
this secular phase, close encounters between the parti-
cles and Planet Nine are no longer possible. However,
as the eccentricity-perihelion cycle unfolds, the particle
must eventually plunge back into the chaotic band. The
object can thus experience new close encounters with
Planet Nine, and hop to another resonance where this
process repeats. In reality, this sequence of events is
further complicated by the fact that at the peak of the
eccentricity cycle, objects are brought to an orbital state
where q ∼ a8 and suffer enhanced semi-major axis dif-
fusion due to scattering off of Neptune (or equivalently,
overlap with Neptune’s exterior mean motion resonances;
Gomes et al. 2008). As a result, it is reasonable to as-
sert that only dynamically “detached” objects that are
not actively scattering off of Neptune, are presently en-
trained in mean motion resonances with Planet Nine.

The dynamical evolution of the orbital inclination ob-
served in the bottom panel of Figure (9) is a consequence
of the chaotic rotation of the angular momentum vectors
around Planet Nine’s orbit normal. That is, their lon-
gitudes of ascending node relative to the orbital plane
of Planet Nine are in circulation. However, if the incli-
nation of P9 is sufficiently large relative to the ecliptic,
then particles that are less inclined with respect to Planet
Nine’s plane than the inclination of P9 itself, will appear
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Fig. 9.— Dynamical evolution exhibited by apsidally confined
objects that do not experience large-amplitude inclination oscilla-
tions. The top panel shows the chaotic footprint outlined by six
uniquely colored particles in ∆$−a space, and elucidates the fact
that a small inclination dispersion renders the semi-major axis evo-
lution of distant Kuiper belt objects stochastic. Each vertical seg-
ment, however, traces out long-term trapping of particles in mean
motion resonances. The middle panel displays e −∆$ dynamics,
demonstrating that secular evolution experienced by the particles
retains its apsidally clustered character, despite chaotic variations
of the semi-major axes, except when a approaches acrit. The bot-
tom panel depicts chaotic evolution of orbital inclinations. In a
reference frame that coincides with Planet Nine’s orbit, the angu-
lar momentum vectors of distant KBOs chaotically rotate around
the orbit normal. Viewed from the ecliptic plane, however, circu-
lation of distant object around Planet Nine’s mildly inclined plane
will yield an apparent clustering of the longitudes of ascending
node.

to have a librating node relative to the ecliptic. In other
words, viewed from a coordinate system that coincides
with the ecliptic plane, the orbits of these particles ex-
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ecute a libration around the forced i − ∆Ω equilibrium
forced by P9’s inclination.

Taken together, our calculations suggest that the clus-
tering of the longitudes of ascending node first noted in
Batygin & Brown (2016a) is nothing but a trivial con-
sequence of the bending of the Laplace plane away from
the solar system’s mean plane by Planet Nine. Moreover,
the apparent libration of the ascending node Ω, together
with the true libration of longitude of perihelion $, pro-
duces the apparent libration of the argument of perihe-
lion ω, as observed in the real data (Trujillo & Sheppard
2014). This implies that the orbital inclination of Planet
Nine must simultaneously be sufficiently large for appar-
ent nodal clustering to ensue (e.g. i9 & 10− 20 deg), but
not be so large as to disrupt the stable confinement of the
longitudes of perihelion (i9 . 40 deg; Brown & Batygin
2016; Saillenfest et al. 2017).

5.2. The Highly-Inclined Population

Perhaps the most remarkable consequence of P9-
driven dynamics is exemplified by the induction of large-
amplitude oscillations in the orbital inclinations of dis-
tant KBOs. Not only is this mode of orbital evolution a
unique prediction of the Planet Nine hypothesis (Baty-
gin & Brown 2016a), real objects presently entrained in
this pattern of perturbation now comprise a firmly es-
tablished part of the observational dataset (Gomes et al.
2015). Accordingly, this regime of P9-induced dynamics
constitutes one of the strongest lines of evidence for the
existence of Planet Nine, as no other dynamical model
can reasonably account for the origin of the observed
highly inclined TNO population. Let us now examine
these extreme orbital excursions within the framework
of our simplified numerical model.

The top panel of Figure (10) shows the inclination time
series of six simulated particles with initial semi-major
axes between 500 AU and 600 AU that do not remain
bound to Planet Nine’s orbital plane for the entire dura-
tion of the integration. As can be readily seen in this Fig-
ure, during the latter half of the solar system’s lifetime,
each object abruptly enters a phase of extreme orbital
variation, and upon experiencing a single large-scale os-
cillation of the inclination rejoins the low-i population
of apsidally anti-aligned bodies. While representative,
we note that orbital excursions of this sort are not al-
ways limited to a single cycle - some objects within the
simulation suite experience a multitude of sequential os-
cillations. Moreover, the onset of high-i excursions is not
limited to a small subset of particles - in our simulation,
38% of all stable objects experience at least one such
excursion.

An intriguing feature of the depicted evolution is that
the pattern of e−∆$ dynamics changes drastically when
a particle enters the highly inclined regime. As shown on
the middle panel of Figure (10), rather than encircling
an elliptic equilibrium located at ∆$ = 180 deg as in
Figure (9), the e − ∆$ projection of the phase-space
portrait acquires a three-lobed shape with eccentricity
maxima located ∼ ±70 deg away from perfect apsidal
anti-alignment with Planet Nine. The corresponding in-
stants where the eccentricities are maximized (and per-
ihelion distance is minimized) are shown with points on
the top panel of Figure (10), and lie almost exactly at
i ≈ 90 deg.

Taken together, the top and middle panels of Fig-
ure (10) show that the model predicts the highly in-
clined population to be most readily observable in a
state that is approximately perpendicular to the eclip-
tic, and is slightly sub-orthogonal in apsidal orientation
with respect to the anti-aligned cluster of distant orbits.
Note however, that during phases of lower eccentricities
(and higher perihelion distance), this population remains
relatively well localized in the longitude of perihelion9

around ∆$ = 180 deg. This means that Kuiper belt
orbits that lie beyond the current observational frontier
exhibit an even more complex dynamical structure than
those comprising the known long-period dataset.

While it is tempting to attribute the mode of orbital
evolution shown in Figure (10) to the oft-cited Kozai-
Lidov (KL) resonance (Lidov 1962; Kozai 1962), it is
crucial to understand that the flavor of secular dynam-
ics executed by the simulated particles is keenly distinct.
Specifically, in contrast with conventional KL evolution
(where orbital inclination is traded for eccentricity such
that the particle’s eccentricity is minimized when or-
bits become orthogonal), the simulated particles reach
their peak eccentricities near i ≈ 90 deg. Moreover, in-
stead of being constrained by the conservation of the
ẑ−component of the specific angular momentum vector
h =
√

1− e2 cos(i) (Kinoshita & Nakai 1999), the orbital
excursions observed in our simulation are accompanied
by large-amplitude variations of this quantity (ranging
from ∼ 1 to -1). This further implies that the KL res-
onance does not represent the primary driver of the de-
picted evolution.

Because the orbit of Planet Nine is assumed to have
i9 = 0 in our calculations, the only angles that appear
in the secular Hamiltonian are ∆$, ω, and their vari-
ous linear combinations. We have already argued above
that the KL mechanism is not responsible for the ob-
served evolution, so libration of ω alone cannot facilitate
the observed dynamics10. Simultaneously, ∆$ cannot
force oscillations in inclination, meaning that the secular
resonance at play must contain both ∆$ and ω. Corre-
spondingly, we propose that large-scale orbital variations
depicted in Figure (10) are driven by libration of the sec-
ular angle

θ = ∆$ − 2ω = 2Ω−$ −$9. (13)

Incidentally, this angle arises at the octopole order of
expansion when the Hamiltonian is expressed as series in
semi-major axis ratios (Mardling 2010).

Adopting ∆γ = −∆$ and θ as the secular angles of
the test particles, we identify the quantity

Θ =

√
1− e2

2
(1− cos i) (14)

as the action conjugate to θ. In the bottom panel of Fig-
ure (10), we show the evolution of canonical cartesian co-
ordinates related to (θ,Θ) action-angle variables. From
this figure, it is evident that during the high-inclination

9 Recall that the longitude of perihelion is a dog-leg angle, and
for highly inclined orbits does not generally represent a good proxy
for the azimuthal angle of the Runge-Lenz vector.

10 Recall that the critical angle associated with the KL resonance
is 2ω (Kinoshita & Nakai 1999).
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Fig. 10.— Dynamical evolution exhibited by simulated particles
that experience orbital flips. The top panel shows the inclination
time series of six uniquely colored test particles that exhibit large-
amplitude orbital excursions and temporarily achieve retrograde
orbits. As the large-scale variations of inclination ensue, e − ∆$
projection of the dynamics acquires a distinct three-lobed shape,
which is characterized by eccentricity maxima that are approxi-
mately 70 deg away from ∆$ = 180 deg, and are achieved when
i ≈ 90 deg. In contrast with Kozai-Lidov dynamics, the depicted
evolution is characterized by simultaneous libration of the critical
angles θ and ∆$ (as shown on the bottom panel), and constitutes
an exceedingly strong form of secular coupling.

phase of orbital evolution, θ executes a bounded oscilla-
tion and the secular trajectory traces out the shape of a
typical resonant separatrix (Henrard & Lamaitre 1983).
Thus, the dynamics shown in Figure (10) is characterized
by the simultaneous libration of the relative longitude of
perihelion ∆$, as well as the angle θ (which jointly leads
to the libration of the longitude of ascending node) repre-
senting an exceptionally strong form of secular coupling.

Due to the lack of separation of timescales on which the
two secular degrees of freedom operate, we cannot study
the depicted large-amplitude variations of inclination us-
ing the same flavor of semi-analytic perturbation theory
as that outlined in section 4. Nevertheless, we note that
the onset of these large-scale oscillations almost always
corresponds to the eccentricity minimum in the e−∆$
cycle that precedes the oscillation. Qualitatively, this im-
plies that resonant-secular e−∆$ dynamics modulates
the proximity parameter of the secular θ −Θ resonance,
such that when e approaches a critical value, a dynam-
ical gateway towards capture of low-inclination objects
into the secular resonance characterized by libration of
θ temporarily opens. Accordingly, the coercion of low-i
objects onto trajectories that experience large-amplitude
oscillations of inclination is a fundamentally stochastic
process. In turn, this means that some of the currently
observed members of the apsidally clustered population
can in principle join the highly inclined population in the
future, and visa-verse.

6. COMPARISON WITH OBSERVATIONS

Given that our spatial model reproduces the key fea-
tures of more detailed numerical simulations, it warrants
a rudimentary comparison with the observational data in
light of the semi-analytical insight into the governing dy-
namics developed above. Because we are neither resolv-
ing the Keplerian motion of the canonical giant planets,
nor their inclination with respect to Planet Nine, here
we will not consider the clustering of the longitudes of
ascending node at low i. Instead, we will focus exclu-
sively on the confinement of the longitude of perihelion
as well as the behavior of the highly inclined long-period
objects.

As shown in Figure (1), there are currently ten known
objects with a > 250 AU (shown in purple) that com-
prise the primary $ cluster. The observational dataset
also shows the existence of two objects that are diamet-
rically opposed to the mean orientation of this cluster
(shown in green), as well as a single outlier, 2015 GT50

(shown in gray), that does not fall within either the apsi-
dally aligned or anti-aligned sub-populations of objects.
In order to meaningfully compare the expectations of the
model with the data, we extended our integrations such
that the initial semi-major axis distribution of the parti-
cle disk stretches out to 850 AU.

The orbital footprint of all simulated long-term stable
and metastable particles is shown in Figure (11), where
the top panel depicts longitude of perihelion as a function
of the semi-major axis (as in the top panel of Figure 9).
Meanwhile, the middle panel shows the orbital inclina-
tion as a function of the argument of perihelion and the
bottom panel elucidates the the action Θ as a function
of its conjugate angle, θ. As a crude proxy for observ-
ability, we adopt simple cuts of the numerical output at
q 6 100 AU and i 6 40 deg. Points corresponding to
bodies with dynamical lifetimes in excess of 4 Gyr that
do not simultaneously satisfy these criteria are shown
in gray, while those that do are shown in blue or red,
depending on their inclination evolution. In particular,
objects that remain confined to the plane of Planet Nine
throughout the integration are shown in blue. On the
other hand, bodies that experience large-amplitude in-
clination oscillations at any point in their evolution are
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depicted in red.
In agreement with the results of Batygin & Brown

(2016a), the top panel of Figure (11) shows the emer-
gence of a well-defined cluster of apsidally anti-aligned
orbits that are contaminated by trajectories that circu-
late in the longitude of perihelion. One striking example
of such a circulating trajectory is shown as a vertical blue
line with a semi-major axis of a ≈ 335 AU. As discussed
in sections 3 and 4, the dynamics of apsidally confined
trajectories are driven by the resonant harmonic φres (see
equation 4), while the comparatively less frequent apsi-
dally circulating trajectories tend to reside within reso-
nant multiplets characterized by low-amplitude libration
of other resonant angles that contain the particle’s longi-
tude of perihelion, $. The aforementioned observational
data are over-plotted on this panel, and are color-coded
in the same way as in Figure (1).

As expected, all observed KBOs that comprise the pri-
mary cluster (shown in purple) are seamlessly explained
by the simulation results. More remarkably, however, the
outlier within the data (shown in gray) is also naturally
reproduced by the model, as an object that belongs to
the class of observable stable particles that exhibit apsi-
dal circulation, i.e. those entrained in resonances char-
acterized by angles that contain $ (see appendix for an
analysis). In the present example, this agreement stems
from the fact the observed object is very close to the 3:1
resonance with Planet Nine. While this correspondence
may be purely accidental, it emphasizes that the mere ex-
istence of a small number of apsidally unconfined objects
that do follow the overall pattern exhibited by the data,
does not constitute strong evidence against the Planet
Nine hypothesis.

Although a similar narrative could in principle be in-
voked for the two objects that are the apsidally aligned
with Planet Nine (shown in green), it can be more rea-
sonably speculated that these bodies are in fact subject
to purely secular interactions with P9. Recall from sec-
tion 2 (Figure 2) that apsidally aligned objects residing
in the secular domain are protected from close encounters
by the geometric co-linearity of the orbits. Correspond-
ingly, objects that never attain low perihelion distances
at the top of their eccentricity cycle and are therefore
close to the secular equilibrium point, exhibit long-term
stable apsidal libration about ∆$ = 0. Conversely ap-
sidally aligned objects with low perihelion distances are
metastable, as they only begin to scatter off of Planet
Nine once they precess onto their respective tangential
collision curves, yielding dynamical lifetimes that are on
the order of (a fraction of) the precession timescale - i.e.,
∼ few× 100 Myr.

Because in our numerical experiments we restricted the
initial perihelion range of all particles to q ∈ (30, 36) AU,
our simulations do not produce any long-term stable
apsidally aligned orbits. Instead, secular dynamics ob-
served within our N -body simulations are dominated by
the metastable particles that originate at high eccentric-
ity and eventually precess towards the tangential config-
uration, where they are scattered out. To demonstrate
the apsidal behavior of this sub-population of orbits, ob-
jects with dynamical lifetimes between 100 and 500 Myr
are shown as orange dots in Figure (11). These particles
clearly cluster around ∆$ = 0, and provide an excellent
match to the aligned (green) data points shown in the
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Fig. 11.— Comparison between the results of our N -body simu-
lation with a9 = 700 AU, e9 = 0.6, m9 = 10m⊕ and the observa-
tional data. The top panel shows the chaotic ∆$−a footprint out-
lined by dynamically long-lived and metastable particles within the
simulation. Evolution of long-term stable low-i objects is displayed
with blue dots when they satisfy our crude observability criteria,
and with gray dots when they attain q > 100 AU or i > 40 deg.
Similarly, objects that do experience large-scale inclination cycles
are shown with red dots when visible and with gray dots otherwise.
Meanwhile, the orbital footprint of metastable objects with dynam-
ical lifetimes between 100 and 500 Myr are shown with orange dots.
The current observational census of distant Kuiper belt objects is
over-plotted on the panel, and is color-coded in the same way as in
Figure (1). Note that 2014 FE72 has a semi-major axis of 1923 AU,
and is shown on the figure for completeness. The middle panel de-
picts the orbital inclination of simulated particles as a function of
their argument of perihelion, while the bottom panel projects the
same trajectories onto a plane defined by the action-angle coor-
dinates Θ and θ. Six currently known long-period centaurs are
over-plotted on the figure as yellow points, and their perihelion
distances and semi-major axes are labeled.

Figure.
Naturally, this explanation would not be sensible if the
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entire distant Kuiper belt had been generated ∼ 4 Gyr
ago and never replenished since then. This is how-
ever not the case in the real solar system: just as the
highly-inclined long-period KBOs are routinely scattered
inwards to create the population of retrograde bodies
with a < 100 AU (Batygin & Brown 2016b), scattered
disk objects with a < 250 AU are continuously scat-
tered outward by Neptune, resupplying the distant trans-
Neptunian region with metastable KBOs (Gomes et al.
2008). Thus, our model points to the possibility that
2013 FT28 and 2015 KG163 are relative newcomers to the
distant Kuiper belt, and will eventually be destabilized
by short-periodic interactions with Planet Nine.

There exists yet another interpretation of the apsi-
dally aligned data points as well, which is not well rep-
resented by Figure (11) due to our choice of low-q ini-
tial conditions. Particularly, rather than belonging to
the aforementioned metastable sub-population of bodies
that experience pure secular evolution, 2013 FT28 and
2015 KG163 could be entrained in the stable secular li-
bration island around ∆$ = 0, and are presently ob-
served near the peak of their respective eccentricity cy-
cles. In order to unequivocally distinguish between these
two interpretations, we would need to know the exact
orbital parameters of Planet Nine. However, we simul-
taneously note that within the context of the long-term
stable interpretation, some additional mechanism other
than scattering off of Neptune (such as say, interactions
with the birth cluster; Morbidelli & Levison 2004; Adams
2010) would likely be required to initially raise the peri-
helion distances of these objects and lock them into the
apsidally aligned secular libration island. This is because
bodies scattered to distant elliptic orbits by the tradi-
tional giant planets would necessarily have low perihelia
(like the initial conditions of our simulation) and there-
fore could not reside within the stable libration island.

The yellow data points shown on the middle and bot-
tom panels of Figure (11) represent the population of dis-
tant (a > 250 AU), highly inclined (i > 40 deg) objects
with q < 30 AU discussed in section 5.2. Although these
objects conform to the dynamical streamlines traced out
by the simulated particles relatively well, it is important
to keep in mind that (by virtue of having q < 30 AU)
these bodies have eccentricities that are much closer to
unity than any of the particles in our simulations. This
means that the observed objects are drawn from the ex-
treme end of the broader high-i population, and have
likely had their orbits somewhat perturbed by the canon-
ical giant planets. As a result, we expect that the agree-
ment between theory and observations will be even better
for (yet-undiscovered) highly inclined long-period KBOs
with q > 30 AU. Certainly, continued observational mon-
itoring of the distant Kuiper belt outside of the ecliptic
plane constitutes a viable avenue towards further charac-
terization of long-term dynamical evolution induced by
Planet Nine.

As a final point, it is instructive to remark on the
extent to which the calculations described above are in
agreement with more detailed simulations that fully re-
solve the orbital motion of the inner giants. In particular,
the top panel of Figure (11) can be readily compared with
Figures (5) and (8) of Batygin & Brown (2016a), which
depict simulations with very similar initial conditions to
that considered herein. As expected, upon comparison

of these numerical experiments we find that the general
survival rate of particles is somewhat lower in simula-
tions that model Neptune directly. Specifically, in our
semi-averaged calculations, 19% of particles initialized
between 250 AU and 550 AU remain stable over 4Gyr,
while only 7% of objects in this initial semi-major axis
and perihelion range survive the full integration span in
a simulation where Neptune is modeled directly. This
number increases slightly to 10% when Planet Nine is
endowed with a i9 = 30 deg inclination with respect to
the inner solar system.

Another notable difference between direct and semi-
averaged calculations lies in that simulated objects that
circulate in perihelion and match our observability crite-
ria are somewhat less prevalent in the simulations that
include Neptune’s short-periodic perturbations. This is
likely because apsidally circulating particles tend to ex-
perience diminished eccentricity variations (see appendix
for details), and thus retain low perihelion distances,
where they are more likely to be removed by Neptune.
Simultaneously, we note that for the exact same reason,
such objects are more readily discoverable by astronom-
ical surveys, and are thus bound to be over-represented
within the observational census of long-period KBOs.
Accordingly, further characterization of P9-sculpted or-
bital distribution, fully accounting for the overlaying ob-
servational biases using high-resolution numerical exper-
iments constitutes an important step towards contin-
ued evaluation of the Planet Nine hypothesis within the
framework of the emergent dataset.

7. DISCUSSION

Within the current observational census of trans-
Neptunian objects, the longest-period orbits exhibit un-
expected collective structure that is most readily at-
tributed to gravitational perturbations induced by a yet-
unseen, massive planet. While numerical simulations
aimed at reproducing the Kuiper belt’s orbital makeup
through gravitational interactions with Planet Nine are
now plentiful in the literature (Batygin & Brown 2016a;
Brown & Batygin 2016; Millholland & Laughlin 2017;
Becker et al. 2017), the physics of the dynamical pro-
cesses responsible for shaping the distant Kuiper belt
remains largely unclear (Beust 2016). In this work, we
have sought to resolve this problem, and characterize the
dynamical evolution induced by Planet Nine upon long-
period Kuiper belt objects, from semi-analytic grounds.

The specific aim of this work has been to qualitatively
understand the three primary lines of evidence for the
existence of Planet Nine. They are: (i) orbital clustering
of long-period Kuiper belt objects, (ii) dynamical detach-
ment of KBO orbits from Neptune, and (iii) generation
of highly inclined/retrograde bodies within the solar sys-
tem. We note that none of these effects are new, and
have already been pointed out in the work of (Batygin
& Brown 2016a). Accordingly, the primary purpose of
this study has been to create an analytical guide for the
interpretation of existing and future numerical results,
rather than to generate new ones. In doing so, we have
been guided by a series of queries that we outlined in the
introduction. Let us now recall, and provide the answers
to these questions.

• What role (if any) do resonant interactions play
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within the dynamical evolution induced by Planet
Nine? If resonances are prevalent, what or-
der/multiplet harmonics dominate the dynamics,
and what are their characteristic widths?

In the most idealized case of strictly planar physical
setup, all high-eccentricity particles that occupy stable
orbits within Planet Nine’s gravitational domain of influ-
ence derive their prolonged dynamical lifetimes from the
phase-protection mechanism inherent to mean-motion
resonances11. The critical angles associated with these
resonances typically have the form φres = k λ9−` λ−(k−
`)$9, and due to the absence of $ (i.e., longitude of peri-
helion of the KBO) from the expression, these harmonics
only modulate the mean anomalies and semi-major axes
of the KBOs12. The most prevalent interior resonances
that arise in our calculations correspond to the 1:1, 3:2,
2:1 and 5:2 period ratios, with secondary contributions
from the 5:4, 4:3, 5:3, and 3:1 commensurabilities. Pro-
vided nominal Planet Nine parameters, the widths of
these resonances lie on the order of δa ∼ 2 − 15 AU,

and scale as δa ∝ m1/2
9 (Henrard & Lamaitre 1983).

If the strict coplanarity restriction is lifted, and the
particles are endowed with a small inclination dispersion
relative to the plane of Planet Nine’s orbit (as in the real
Kuiper belt), a large portion of resonant dynamics be-
come chaotic, and facilitate an essentially diffusive semi-
major axis evolution, with particles hopping from one
resonance to another. Moreover, for high eccentricity or-
bits that reach q . 36 AU, stochastic semi-major axis
transport is further enhanced by gravitational scattering
off of Neptune (Gomes et al. 2008). These complica-
tions imply that only dynamically detached objects with
q & 40 AU can reasonably be speculated to currently
reside in mean-motion resonances with Planet Nine, and
any attempt to calculate the present-day semi-major axis
of Planet Nine exclusively from resonant relationships
with the observed KBOs (Malhotra et al. 2016) may be
spoiled by the chaotic nature of the underlying dynamics.

• What role (if any) do secular interactions play
within the dynamical evolution induced by Planet
Nine? If dominant, how are close encounters
avoided on co-planar, anti-aligned orbits? More-
over, if resonant interactions are relevant to the
Planet Nine hypothesis, why does the purely sec-
ular phase-space portrait provide a good match to
the results of numerical simulations?

While mean-motion resonances stabilize the orbits
against close-encounters, they do little to modulate the
eccentricities and longitudes of perihelia of the affected
bodies. As a result, the e−∆$ dynamics induced upon
distant KBOs by Planet Nine is largely secular. This ex-
plains why the doubly averaged treatment of the dynam-
ics outlined in section 2 provides a good approximation
to the results of numerical simulations discussed in sec-
tion 3 (Beust 2016). At the same time, it is important

11 Recall from section 2 that stable orbits outside MMRs also
exist, and avoid close encounters with P9 via low-amplitude apsidal
libration around ∆$ = 0. Such orbits, however, never reach low
values of q and are therefore difficult to detect.

12 This is evident from simple application of Hamilton’s equa-
tions to the disturbing potential.

to keep in mind that the true resonant-secular evolution
facilitated by Planet Nine’s mean gravitational potential
is subtly different from the purely secular limit, since the
orbital averaging process itself is subject to the resonant
relationship among the orbital phases of the bodies. The
delicate differences between purely secular and resonant-
secular dynamics induced by Planet Nine can be noted
by comparing Figures (2) and (7).

The eccentricity-perihelion projection of the resonant-
secular phase-space portraits outlined in Figure (7) fur-
ther shows that apsidal clustering of distant KBOs and
the detachment of perihelion from Neptune’s orbit exem-
plified by objects such as Sedna and 2012 VP113 (Brown
et al. 2004; Trujillo & Sheppard 2014) are actually the
same physical effect. That is, as the orbits of KBOs
evolve along the level curves of the resonant-secular
Hamiltonian, they are forced to encircle a stable equi-
librium that resides at ∆$ = 180 deg. Thus, libration
of a Kuiper belt object’s longitude of perihelion around
the apsidally anti-aligned configuration with respect to
Planet Nine is accompanied by conjugate oscillations of
the eccentricity that periodically detach (and reattach)
the perihelion from (to) Neptune.

While the gravitational influence of P9 alone provides a
perfectly adequate mechanism for perihelion detachment
of long-period objects, we cannot exclude the possibility
that KBOs were additionally affected by other dynami-
cal processes (such as interactions with the birth cluster;
Morbidelli & Levison 2004) during the solar system’s in-
fancy. If so, some fraction of the distant clustered pop-
ulation may occupy secular cycles that will never bring
their perihelia sufficiently close to the orbit of Neptune
for scattering to ensue. In either case, our calculations
reveal that the maximal width of the perihelion cluster
is limited to |∆$ − 180 deg | . 90 deg - a restriction fa-
cilitated by both the character of the dynamics itself, as
well as the collision locus that limits the domain where
close encounters can be avoided on the e − ∆$ plane.
Within this framework, Planet Nine’s mass merely reg-
ulates the size of the chaotic layer, and the timescale on
which perihelion cluster get sculpted.

• What parameters determine the critical semi-major
axis corresponding to the transition between ran-
domized and clustered longitudes of perihelion?
What physical effect controls this transition?

Given that the long-term dynamics induced upon
KBOs by Planet Nine are essentially secular in nature,
the critical semi-major axis beyond which orbital clus-
tering ensues corresponds to a point where quadrupolar
torques induced by Planet Nine begin to dominate over
those arising from the canonical giant planets. Com-
puted in this framework, curves corresponding to critical
semi-major axes of acrit = 150, 200 and 250 AU are delin-
eated in e9−a9 space for m9 = 5, 10, and 20m⊕ in Figure
(8). While these loci provide an approximate measure of
acrit, we note that the transition between apsidally con-
fined and randomized orbits in our N -body simulations
is somewhat gradual (as shown in Figure 3).

With decreasing semi-major axis, the relative number
of resonant bodies that are apsidally clustered decreases
with respect to those that are not13. This means that

13 In our coplanar calculations, this transition also corresponds
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although acrit provides a characteristic semi-major axis
that corresponds to the onset of orbital clustering, the
real Kuiper belt at a . acrit will show orbital cluster-
ing that is increasingly contaminated by non-anti-aligned
bodies - an effect seen in the real data (Trujillo & Shep-
pard 2014; Shankman et al. 2017). Meanwhile, our cal-
culations suggest that clustering of the orbital planes of
distant KBOs and the corresponding nodal confinement
is a simple consequence of the tilting of the Laplace plane
away from the ecliptic by Planet Nine.

• What is the qualitative behavior of inclination dy-
namics within the framework of P9-driven evolu-
tion? What dynamical process allows some of the
objects to acquire exceptionally high inclinations
in the distant Kuiper belt?

Not all objects affected by Planet Nine remain con-
fined to the Laplace plane on multi-Gyr timescales. In-
stead, a subset of long-period KBOs execute large-scale
oscillations in the orbital inclination as well as eccentric-
ity. This mode of P9-induced evolution is distinct from
the Kozai-Lidov mechanism, and is driven by a high-
order secular resonance that is characterized by simul-
taneous libration of the critical angle θ = ∆$ − 2ω as
well as ∆$. This doubly-resonant form of secular cou-
pling forces a particular strenuous exchange of angular
momentum, and generally leads to acute orbit-flipping
behavior of distant KBOs (Li et al. 2014).

The onset of these large-amplitude orbital excursion
is fundamentally chaotic, and is facilitated by variations
in the the angular momentum deficit that is driven by
resonant-secular e−∆$ oscillations. That is, oscillations
in the eccentricity modulate the system’s proximity to
the θ−resonance, periodically allowing low-inclination
orbits to enter the highly inclined dynamical regime. As
the subsequent orbital evolution unfolds, the eccentricity
reaches a peak of its cycle when inclination is approxi-
mately i ≈ 90 deg, meaning that bodies belonging to the
highly inclined population are most readily observable
in a state roughly perpendicular to the plane of the
solar system. This qualitatively explains the observed
dynamical state of large semi-major axis centaurs, which
constitutes the third major line of evidence for the
existence of Planet Nine.

There exist two other, secondary lines of evidence for
the existence of Planet Nine, which we did not discuss in
this paper. The first is obliquity of the Sun (Bailey et al.
2016; Lai 2016; Gomes et al. 2017). One reason we chose
to not discuss this dynamical effect is because it is in-
trinsically trivial. It is well-known that secular coupling
between two mutually inclined orbits results in a regres-
sion of the node of both orbits, meaning that the twist-
ing of the giant planets’ orbital plane out of alignment
with the solar spin-axis is an inescapable consequence
of Planet Nine’s existence. As a result, the genuinely
remarkable aspect of this calculation is not that a spin-
orbit misalignment can be excited, but the fact that a
Planet Nine configuration close to the one deduced from
distant Kuiper belt constraints can adequately reproduce

to the progressive dominance of the angle ψres over φres (see equa-
tion 4) as the resonant guiding center.

the solar obliquity, when its gravitational influence is ex-
erted over the entire lifetime of the solar system.

At the same time, we note that strictly speaking,
Planet Nine is not required to explain the obliquity of
the sun, and other theoretical models exist. For ex-
ample, Batygin (2012) argued that a primordial binary
companion to the solar system could have excited the ob-
served spin-orbit misalignment through the same exact
mechanism, while Lai et al. (2011) have proposed that
magnetic interactions between the sun and the inner re-
gions of the protosolar nebula could have accomplished
the same task. We note however, that while a multitude
of processes could have contributed to the observed obliq-
uity of the sun, the gravitational influence of Planet Nine
provides the only dynamical mechanism that is directly
testable.

Another population of objects that Planet Nine natu-
rally generates is the highly inclined component of the
proximate (a < 100 AU) Kuiper belt. This subset of
bodies includes all objects with i & 35 deg that do not
naturally emerge from simulations of the solar system’s
primordial evolution (Levison et al. 2008; Batygin et al.
2011; Nesvorný 2015), and include the retrograde ob-
jects “Drac” (Gladman et al. 2009) and “Niku” (Chen
et al. 2016). While these objects appear observationally
distinct from the nearly-perpendicular high semi-major
axis centaurs discussed above, full-fledged N -body simu-
lations reported in (Batygin & Brown 2016b) show that
the highly inclined a < 100 AU objects are simply the
large-a objects that have been scattered inwards by Nep-
tune. As a consequence, they do not require a sepa-
rate dynamical explanation from the objects undergoing
large-scale orbital excursions discussed in section 5.2 of
this paper.

Cumulatively, the aforementioned lines of evidence
constitute a compelling case for the existence of Planet
Nine, as none of the objects within the current obser-
vational dataset exert any significant tension upon the
model. In light of this broadranging agreement, (short
of direct detection of Planet Nine) the most direct avenue
towards further reinforcement or falsification of our the-
ory is the continued detection of a & 250 AU Kuiper belt
objects with the aim to better establish the statistical
significance of the clustering of longitudes of perihelion
and ascending node (Brown 2017; Shankman et al. 2017).
To this end, we reiterate that even though contamination
of the clustered orbital pattern by unconfined particles
is an expected result of P9’s gravitational influence, a
notable grouping of long-period trajectories in physical
space remains a key feature of the dynamical model.

While the evidence for P9 remains strong, as already
discussed in the introduction, a simple proposition of
an extant planet beyond Neptune does not amount to
a meaningful theoretical prediction. Instead, the Planet
Nine hypothesis is uniquely defined by the combination of
observational signatures it explains and the specific dy-
namical mechanisms through which these astronomical
patterns arise. Thus, the final evaluation of the Planet
Nine hypothesis will not simply correspond to a detection
of a planet beyond Neptune, but the confrontation of the
outlined theory with the dynamical evolution induced by
this planet. Thankfully, the observational prospects for
the direct detection of Planet Nine either through on-
going or future surveys are quite promising (Brown &
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Batygin 2016; Holman & Payne 2016a,b; Fortney et al.
2016; Millholland & Laughlin 2017), and it is likely that
the concluding assessment of the theoretical model out-
lined in this paper will occur on a timescale considerably
shorter than a decade.
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APPENDIX

COMPUTATIONAL DETAILS

Throughout the paper, we have relied on various closed-form computations of the averaged Hamiltonian (specifically,
expressions 1, 10 and 12), without explicitly stating how the calculations were carried out. Let us now comment on
the practical details inherent to these evaluations. In the plane, the cartesian coordinates of the particle’s position
vector, r, are given by the well-known relations (Morbidelli 2002):

x = a
(

cosE − e
)

cos$ − a
√

1− e2 sinE sin$

y = a
(

cosE − e
)

sin$ − a
√

1− e2 sinE cos$, (A1)

where E is the eccentric anomaly. Identical expressions (with subscript 9) apply to the position vector of Planet Nine.
While the aforementioned cartesian coordinates are most naturally expressed in terms of the eccentric anomaly,

canonical averaging of the Hamiltonian is carried out with respect to the mean longitude, λ. The two quantities are
related via Kepler’s equation. Therefore, rather than solving Kepler’s equation at every computational step to express
x and y in terms of λ, it is more convenient to integrate directly with respect to E, by introducing the Jacobian
(Pichierri et al. 2017)

dλ = (1− e cosE) dE. (A2)

For the case of the doubly averaged secular Hamiltonian (1), it is appropriate to carry out the integral assuming
that λ and λ9 are not correlated. This is however not the case for singly averaged resonant and resonant-secular
Hamiltonians (10) and (12). Particularly, in these instances the mean longitudes of the particle and Planet Nine are
linked to one-another through the resonant relationship:

λ =
φres − (k − `)$9 + k λ9

`
. (A3)

Accordingly, in this case Kepler’s equation must be solved at every iteration, to obtain the eccentric anomaly of the
particle as a function of λ9.

In order to construct resonant-secular phase-space portraits in the J → 0 limit, it is necessary to first map out the
equilibrium value of the resonant angle φres on the (e,∆$) domain. For the specific problem at hand, this can be done
by sampling the resonant Hamiltonian (10) as a function of φres along the a = (`/k)2/3 a9 line, and numerically finding
the the relevant local maximum. Incidentally, the equilibrium value of φres typically lies half-way in between the
collision curves, which are easily obtained by solving the simultaneous equations x = x9, y = y9, and substituting the
resulting values of E and E9 into Kepler’s equation to yield the values of φres that correspond to collisional trajectories.

APSIDALLY CIRCULATING RESONANT ORBITS

In section 4 of the main text, we constructed a semi-analytic model for apsidally confined resonant orbits residing
in interior 5:2, 2:1, 3:2 and 1:1 mean motion resonances with P9. As demonstrated in Figure (3), however, particles
residing at somewhat lower values of semi-major axes (particularly those entrained in the 3:1 and 4:1 commensurabil-
ities) predominantly exhibit apsidal circulation. Let us briefly consider the dynamical behavior of such trajectories in
greater detail.

Representative trajectories of particles locked in 3:1 and 4:1 resonances, drawn from the a = 700 AU simulation
described in section (3), are shown in Figure (12). The panels in this Figure are analogous to those depicted in Figure
(4) of the main text, with the exception that the librating resonant angle which drives the dynamics has the form

ϕres = k λ9 − ` λ−$ − (k − `− 1)$9 = φres −∆$. (B1)

Because these orbits are characterized by circulation of ∆$, no resonant multiplets other than ϕres are in libration.
Note further that eccentricity modulation associated with the evolution of the apsidal angle ∆$ is in this case very
mild, especially compared to that shown in Figure (4).

In order to more closely examine the phase-space evolution of the apsidally circulating orbits, we follow the same
semi-analytic procedure as that outlined in section 4. To avoid redundancy, we focus exclusively on the 3:1 MMR,
since the 4:1 MMR exhibits very similar behavior. In similitude with equation (7), we define the canonical coordinates
that identify ϕres as a reference angle

Λ′′ = Λ/` ϕ′′res = −ϕres
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Fig. 12.— Orbital time series of two resonant objects exhibiting apsidal circulation. The trajectories are drawn from the same simulation
as those depicted in Figure (4), and correspond to the 3:1 (top) and 4:1 (bottom) resonances respectively. Unlike the apsidally confined
orbits depicted in Figure (4), these objects derive their resonant phase-protection mechanism from libration of resonant angles that contain
the particle’s longitude of perihelion, $ (equation B1).

Λ′′9 = Λ9 + (k/`) Λ λ′′9 = λ9

Γ′′ = Γ + Λ/` ∆γ = γ − γ9 = −∆$

Γ′′9 = Γ9 + Γ + ((k − `)/`) Λ γ′′9 = γ9. (B2)

As before, upon averaging the Hamiltonian with respect to the fast angle λ′′9 , we are left behind with an adiabatic
system that is characterized by a resonant degree of freedom in (Λ′′ − ϕ′′res) as well as a secular degree of freedom in
(Γ′′ −∆γ).

Freezing Γ′′ at a value that corresponds to q = 35 AU at a = (`/k)2/3 a9 and setting ∆$ = −∆γ = π, we have
computed the resonant phase-space diagram akin to those presented in Figure (5) for the interior 3:1 resonance.
However, in this case, the Hamiltonian (10) was computed under the constraint of the resonant relationship (B1)
instead of equation (4). The resulting (a − ϕres) diagram is shown in the left panel of Figure (13) with the result of
our N -body simulation over-plotted in red.

Unlike the long-term stable orbits that exhibit steady perihelion clustering, apsidally circulating trajectories shown
in Figure (12) reside in the sub-domain of the (a − ϕres) diagram that is occupied by the ∞-shaped separatrix, and
encircle this homoclinic curve from the outside. In contrast with the neighborhood of the elliptic equilibrium point
discussed in section 4.1, this phase-space domain is never fully swept by the collision curves as ∆$ swings from 0 to
2π. As a result, trajectories that surround this resonance can safely rotate through all possible values of ∆$ without
compromising the resonant phase-protection mechanism.

This means that in the case of resonances characterized by libration of ϕres, there is no equivalent of the (e−∆$)
collision locus that arises within the framework of MMRs characterized by libration of φres (shown as the bounding
curves in Figure 7). Nevertheless, the resonance that resides at the core of the apsidally circulating trajectory (as
shown in Figure 13) undergoes topological changes driven by evolution of ∆$. In particular, as ∆$ shifts away from
π towards 0, the ∞-shaped separatrix deforms asymmetrically and eventually vanishes, as two of the three associated
fixed points disappear. Finally, as ∆$ tends closer to 0, the remaining (elliptic) fixed point returns to the origin, such
that the trajectory once again encircles ϕres = 0 at ∆$ = 014. In other words, as ∆$ circulates from 0 to 2π, the
resonant center of ϕres experiences a concurrent oscillation about ϕres = 0 with an amplitude of order ∼ π/2 (as shown
in the right panel of Figure 12).

In order to approximately elucidate the resonant-secular dynamics that unfolds in the ∆$-circulating regime, we
have computed the averaged Hamiltonian (12) under the constraint of the resonant relationship (B1). Following the
discussion outlined in section (4.2), we assume that the adiabatic invariant J = 0, and thereby confine ourselves to the
a−ϕres equilibrium point that remains extant (and stable) in the ∆$ ∈ (0, π) range, and simply reflect the computed
portrait onto the ∆$ ∈ (π, 2π) domain. The corresponding (e −∆$) diagram is shown in the right panel of Figure
(13), with the N -body trajectory over-plotted in orange.

Although the semi-analytical secular portrait matches the numerically computed evolution well, we note that for
these apsidally circulating trajectories, the J = 0 assumption is a relatively crude one, since the orbit itself resides
outside the separatrix and does not directly encircle the equilibrium point. To this end, the kinks in the semi-analytical

14 The same picture applies to ∆$ shifting from π to 2π, but the opposite resonant equilibrium point survives in this case.
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Fig. 13.— Semi-analytically computed resonant a−ϕ (left) and resonant-secular e−∆$ (right) phase-space portraits for the 3:1 MMR,
assuming equilibrium libration of the critical angle given by expression (B1). Numerically computed trajectories shown in Figure (12) are
depicted with red and orange lines in the left and right panel respectively, signaling satisfactory agreement between semi-analytic theory
and N -body simulations. See captions of Figures (5) and (7) for further details.

curves shown in Figure (13) at ∆$ = π are an unphysical consequence of this assumption, and would disappear if the
portrait was more carefully computed by carrying out the averaging process along the contour of a (a−ϕres) trajectory
that encircles a phase-space area greater than that occupied by the separatrix. In fact, the reason for which the J = 0
approximation works relatively well in our calculation is that the area engulfed by the ∞-shaped curve is never big.
Therefore, a more rigorous treatment of adiabatic theory can be carried out by assuming a non-zero but nevertheless
small value of J .

Irrespective of the details associated with computation of the Hamiltonian (12) for ϕres-type commensurabilities,
the results of the N -body simulation shown in Figure (12) as well as the semi-analytic calculations presented in Figure
(13), point to the fact that resonantly protected trajectories that circulate in longitude of perihelion naturally arise
within the framework of the Planet Nine hypothesis. Correspondingly, given sufficient data, characterization of the
specific semi-major axes that such trajectories occupy may provide key constraints on the present-day orbital state of
Planet Nine.
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