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Abstract

Recent advances in 3D sensing technologies make it possible to easily record color
and depth images which together can improve object recognition. Most current
methods rely on very well-designed features for this new 3D modality. We in-
troduce a model based on a combination of convolutional and recursive neural
networks (CNN and RNN) for learning features and classifying RGB-D images.
The CNN layer learns low-level translationally invariant features which are then
given as inputs to multiple, fixed-tree RNNs in order to compose higher order fea-
tures. RNNs can be seen as combining convolution and pooling into one efficient,
hierarchical operation. Our main result is that even RNNs with random weights
compose powerful features. Our model obtains state of the art performance on a
standard RGB-D object dataset while being more accurate and faster during train-
ing and testing than comparable architectures such as two-layer CNNs.

1 Introduction

Object recognition is one of the hardest problems in computer vision and important for making
robots useful in home environments. New sensing technology, such as the Kinect, that can record
high quality RGB and depth images (RGB-D) has now become affordable and could be combined
with standard vision systems in household robots. The depth modality provides useful extra infor-
mation to the complex problem of general object detection [1] since depth information is invariant
to lighting or color variations, provides geometrical cues and allows better separation from the back-
ground. Most recent methods for object recognition with RGB-D images use hand-designed features
such as SIFT for 2d images [2], Spin Images [3] for 3D point clouds, or specific color, shape and
geometry features [4, 5].

In this paper, we introduce the first convolutional-recursive deep learning model for object recogni-
tion that can learn from raw RGB-D images. Compared to other recent 3D feature learning methods
[6, 7], our approach is fast, does not need additional input channels such as surface normals and ob-
tains state of the art results on the task of detecting household objects. Fig. 1 outlines our approach.
Code for training and testing is available at www . socher.org.

Our model starts with raw RGB and depth images and first separately extracts features from them.
Each modality is first given to a single convolutional neural net layer (CNN, [8]) which provides
useful translational invariance of low level features such as edges and allows parts of an object
to be deformable to some extent. The pooled filter responses are then given to a recursive neural
network (RNN, [9]) which can learn compositional features and part interactions. RNNs hierarchi-
cally project inputs into a lower dimensional space through multiple layers with tied weights and
nonlinearities.

We also explore new deep learning architectures for computer vision. Our previous work on RNNs
in natural language processing and computer vision [9, 10] (i) used a different tree structure for each
input, (ii) employed a single RNN with one set of weights, (iii) restricted tree structures to be strictly
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Figure 1: An overview of our model: A single CNN layer extracts low level features from RGB and
depth images. Both representations are given as input to a set of RNNs with random weights. Each
of the many RNNs (around 100 for each modality) then recursively maps the features into a lower
dimensional space. The concatenation of all the resulting vectors forms the final feature vector for a
softmax classifier.
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binary, and (iv) trained the RNN with backpropagation through structure [11, 12]. In this paper, we
expand the space of possible RNN-based architectures in these four dimensions by using fixed tree
structures and multiple RNNs on the same input and allow n-ary trees. We show that because of
the CNN layer, fixing the tree structure does not hurt performance and it allows us to speed up
recognition. Similar to recent work [13, 14] we show that performance of RNN models can improve
with an increasing number of features. The hierarchically composed RNN features of each modality
are concatenated and given to a joint softmax classifier.

Most importantly, we demonstrate that RNNs with random weights can also produce high quality
features. So far random weights have only been shown to work for convolutional neural networks
[15, 16]. Because the supervised training reduces to optimizing the weights of the final softmax
classifier, a large set of RNN architectures can quickly be explored. By combining the above ideas
we obtain a state of the art system for classifying 3D objects which is very fast to train and highly
parallelizable at test time.

We first briefly describe the unsupervised learning of filter weights and their convolution to obtain
low level features. Next we give details of how multiple random RNNs can be used to obtain high
level features of the entire image. Then, we discuss related work. In our experiments we show
quantitative comparisons of different models, analyze model ablations and describe our state-of-the-
art results on the RGB-D dataset of Lai et al. [2].

2 Convolutional-Recursive Neural Networks

In this section, we describe our new CNN-RNN model. We first learn the CNN filters in an unsuper-
vised way by clustering random patches and then feed these patches into a CNN layer. The resulting
low-level, translationally invariant features are given to recursive neural networks. RNNs compose
higher order features that can then be used to classify the images.

2.1 Unsupervised Pre-training of CNN Filters

We follow the procedure described by Coates et al. [13] to learn filters which will be used in
the convolution. First, random patches are extracted into two sets, one for each modality (RGB
and depth). Each set of patches is then normalized and whitened. The pre-processed patches are
clustered by simply running k-means. Fig. 2 shows the resulting filters for both modalities. They
capture standard edge and color features. One interesting result when applying this method to the
depth channel is that the edges are much sharper. This is due to the large discontinuities between
object boundaries and the background. While the depth channel is often quite noisy most of the
features are still smooth.
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Figure 2: Visualization of the k-means filters used in the CNN layer after unsupervised pre-training:
(left) Standard RGB filters (best viewed in color) capture edges and colors. When the method is
applied to depth images (center) the resulting filters have sharper edges which arise due to the strong
discontinuities at object boundaries. The same is true, though to a lesser extent, when compared to
filters trained on gray scale versions of the color images (right).

2.2 A Single CNN Layer

To generate features for the RNN layer, a CNN architecture is chosen for its translational invariance
properties. The main idea of CNNs is to convolve filters over the input image in order to extract
features. Our single layer CNN is similar to the one proposed by Jarrett et. al [17] and consists of a
convolution, followed by rectification and local contrast normalization (LCN). LCN was inspired by
computational neuroscience and is used to contrast features within a feature map, as well as across
feature maps at the same spatial location [17, 18, 14].

We convolve each image of size (height and width) d; with K square filters of size dp, resulting in
K filter responses, each of dimensionality d; — dp + 1. We then average pool them with square
regions of size dy and a stride size of s, to obtain a pooled response with width and height equal
tor = (dr — ds)/s + 1. So the output X of the CNN layer applied to one image is a K X r x r
dimensional 3D matrix. We apply this same procedure to both color and depth images separately.

2.3 Fixed-Tree Recursive Neural Networks

The idea of recursive neural networks [19, 9] is to learn hierarchical feature representations by
applying the same neural network recursively in a tree structure. In our case, the leaf nodes of the
tree are K -dimensional vectors (the result of the CNN pooling over an image patch repeated for all
K filters) and there are 2 of them.

In our previous RNN work [9, 10, 20] the tree structure depended on the input. While this allows
for more flexibility, we found that for the task of object classification in conjunction with a CNN
layer it was not necessary for obtaining high performance. Furthermore, the search over optimal
trees slows down the method considerably as one can not easily parallelize the search or make use
of parallelization of large matrix products. The latter could benefit immensely from new multicore
hardware such as GPUs. In this work, we focus on fixed-trees which we can design to be balanced.
Previous work also only combined pairs of vectors. We generalize our RNN architecture to allow
each layer to merge blocks of adjacent vectors instead of only pairs.

We start with a 3D matrix X € RE*7%" for each image (the columns are K -dimensional). We
define a block to be a list of adjacent column vectors which are merged into a parent vector p € R
In the following we use only square blocks for convenience. Blocks are of size K x b x b. For
instance, if we merge vectors in a block with b = 3, we get a total size 128 x 3 x 3 and a resulting
list of vectors (1, ..., xg). In general, we have b? many vectors in each block. The neural network
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where the parameter matrix W € RF xXb’K f is a nonlinearity such as tanh. We omit the bias
term which turns out to have no effect in the experiments below. Eq. 1 will be applied to all blocks
of vectors in X with the same weights W. Generally, there will be (r/b)? many parent vectors p,
forming a new matrix P;. The vectors in P; will again be merged in blocks just as those in matrix
X using Eq. 1 with the same tied weights resulting in matrix P,. This procedure continues until
only one parent vector remains. Fig. 3 shows an example of a pooled CNN output of size K x 4 x 4
and a RNN tree structure with blocks of 4 children.

The model so far has been unsupervised. However, P1
our original task is to classify each block into one of = lw P2
many object categories. Therefore, we use the top p=. P3
vector P, as the feature vector to a softmax classi- | P4
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2.4 Multiple Random RNNs

Previous work used only a single RNN. We can W e RK xnk |
actually use the 3D matrix X as input to a num- w ([ M1 w
ber of RNNs. Each of N RNNs will output a K- /| ADAVS
dimensional vector. After we forward propagate cR K
through all the RNNs, we concatenate their outputs x; €

to a N K-dimensional vector which is then given to
the softmax classifier. X ke RE x4

Instead of taking derivatives of the W matrices of the
RNNs which would require backprop through struc-
ture [11], we found that even RNNs with random
weights produce high quality feature vectors. Sim-
ilar results have been found for random weights in
the closely related CNNs [16]. Before comparing to
other approaches, we briefly review related work.

Figure 3: Recursive Neural Network applied
to blocks: At each node, the same neural net-
work is used to compute the parent vector of
a set of child vectors. The original input ma-
trix is the output of a pooled convolution.

3 Related Work

There has been great interest in object recognition and scene understanding using RGB-D data.
Silberman and Fergus have published a 3D dataset for full scene understanding [21]. Koppula et al.
also recently provided a new dataset for indoor scene segmentation [4].

The most common approach today for standard object recognition is to use well-designed features
based on orientation histograms such as SIFT, SURF [22] or textons and give them as input to a
classifier such as a random forest. Despite their success, they have several shortcomings such as
being only applicable to one modality (grey scale images in the case of SIFT), not adapting easily
to new modalities such as RGB-D or to varying image domains. There have been some attempts
to modify these features to colored images via color histograms [23] or simply extending SIFT
to the depth channel [2]. More advanced methods that generalize these ideas and can combine
several important RGB-D image characteristics such as size, 3D shape and depth edges are kernel
descriptors [5].



Another related line of work is about spatial pyramids in object classification, in particular the
pyramid matching kernel [24]. The similarity is mostly in that our model also learns a hierarchical
image representation that can be used to classify objects.

Another solution to the above mentioned problems is to employ unsupervised feature learning meth-
ods [25, 26, 27] (among many others) which have made large improvements in object recognition.
While many deep learning methods exist for learning features from rgb images, few deep learning
architectures have yet been investigated for 3D images. Very recently, Blum et al. [6] introduced
convolutional k-means descriptors (CKM) for RGB-D data. They use SURF interest points and
learn features using k-means similar to [28]. Their work is similar to ours in that they also learn
features in an unsupervised way.

Very recent work by Bo et al. [7] uses unsupervised feature learning based on sparse coding to learn
dictionaries from 8 different channels including grayscale intensity, RGB, depth scalars, and surface
normals. Features are then used in hierarchical matching pursuit which consists of two layers. Each
layer has three modules: batch orthogonal matching pursuit, pyramid max pooling, and contrast
normalization. This results in a very large feature vector size of 188,300 dimensions which is used
for classification.

Lastly, recursive autoencoders have been introduced by Pollack [19] and Socher et al. [10] to which
we compare quantitatively in our experiment section. Recursive neural networks have been applied
to full scene segmentation [9] but they used hand-designed features. Farabet et al. [29] also introduce
amodel for scene segmentation that is based on multi-scale convolutional neural networks and learns
feature representations.

4 Experiments

All our experiments are carried out on the recent RGB-D dataset of Lai et al. [2]. There are 51
different classes of household objects and 300 instances of these classes. Each object instance is
imaged from 3 different angles resulting in roughly 600 images per instance. The dataset consists of
a total of 207,920 RGB-D images. We subsample every 5th frame of the 600 images resulting in a
total of 120 images per instance.

In this work we focus on the problem of category recognition and we use the same setup as [2] and
the 10 random splits they provide. All development is carried out on a separate split and model
ablations are run on one of the 10 splits. For each split’s test set we sample one object from each
class resulting in 51 test objects, each with about 120 independently classified images. This leaves
about 34,000 images for training our model. Before the images are given to the CNN they are resized
to be d; = 148.

Unsupervised pre-training for CNN filters is performed for all experiments by using k-means on
500,000 image patches randomly sampled from each split’s training set. Before unsupervised pre-
training, the 9 x 9 x 3 patches for RGB and 9 x 9 patches for depth are individually normalized
by subtracting the mean and divided by the standard deviation of its elements. In addition, ZCA
whitening is performed to de-correlate pixels and get rid of redundant features in raw images [30].
A valid convolution is performed with filter bank size K = 128 and filter width and height of 9.
Average pooling is then performed with pooling regions of size d; = 10 and stride size s = 5 to
produce a 3D matrix of size 128 x 27 x 27 for each image.

Each RNN has non-overlapping child sizes of 3 x 3 applied spatially. This leads to the following
matrices at each depth of the tree: X € R128X27%27 o p; ¢ R128X9%9 o P, € R128%3X3 10 finally
P3 € R'2%, We use 128 randomly initialized RNNs in both modalities. The combination of RGB
and depth is done by concatenating the final features which have 2 x 128% = 32, 768 dimensions.

4.1 Comparison to Other Methods

In this section we compare our model to related models in the literature. Table 1 lists the main
accuracy numbers and compares to the published results [2, 5, 6, 7]. Recent work by Bo et al.
[5] investigates multiple kernel descriptors on top of various features, including 3D shape, physical
size of the object, depth edges, gradients, kernel PCA, local binary patterns,etc. In contrast, all our
features are learned in an unsupervised way from the raw color and depth images. Blum et al. [6]



Classifier Extra Features for 3D;RGB 3D RGB Both

Linear SVM [2] Spin Images, efficient match kernel (EMK), | 53.1£1.7 | 74.3+3.3 | 81.942.8
random Fourier sets, width, depth, height;
SIFT, EMK, texton histogram, color histogram

Kernel SVM [2] same as above 64.74+2.2 | 74.54+3.1 | 83.9£3.5
Random Forest [2] | same as above 66.8+2.5 | 74.7£3.6 | 79.6+4.0
SVM [5] 3D shape, physical size of the object, depth | 78.8£2.7 | 77.7+£1.9 | 86.242.1

edges, gradients, kernel PCA, local binary pat-
terns,multiple depth kernels

CKM [6] SUREF interest points - - 86.442.3
SP+HMP [7] surface normals 81.2+2.3 | 82.4+3.1 | 87.5+2.9
CNN-RNN - 78.94+3.8 | 80.8+4.2 | 86.84+3.3

Table 1: Comparison of our CNN-RNN to multiple related approaches. We outperform all ap-
proaches except that of Bo et al. which uses an extra input modality of surface normals.

also learn feature descriptors and apply them sparsely to interest points. We outperform all methods
except that of Bo et al. [7] who perform 0.7% better with a final feature vector that requires five
times the amount of memory compared to ours. They make additional use of surface normals and
gray scale images on top of RGB and depth channels and also learn features from these inputs with
unsupervised methods based on sparse coding. Sparse coding is known to not scale well in terms of
speed for large input dimensions [31].

4.2 Model Analysis

We analyze our model through several ablations and model variations. We picked one of the splits
as our development fold and focus on RGB images and RNNs with random weights only unless
otherwise noted.

Two layer CNN. Fig. 4 (left) shows a comparison between our CNN-RNN model and a two layer
CNN. We compare a previously recommended architecture for CNNs [17] and one which uses filters
trained with k-means. In both settings, the CNN-RNN outperforms the two layer CNN. Because it
also requires many fewer matrix multiplication, it is approximately 4 x faster in our experiments
compared to a second CNN layer. However, the main bottleneck of our method is still the first CNN
layer. Both models could benefit from fast GPU implementations [32, 33].

Tree structured neural nets with untied weights. Fig. 4 (left) also gives results when the weights
of the random RNNs are untied across layers in the tree (TNN). In other words, different random
weights are used at each depth of the tree. Since weights are still tied inside each layer this setting
can be seen as a convolution where the stride size is equal to the filter size. We call this a tree neural
network (TNN) because it is technically not a recursive neural network. While this results in a large
increase in parameters, it actually hurts performance underlining the fact that tying the weights in
RNNss is beneficial.

Trained RNN. Another comparison shown in Fig. 4 (left) is between many random RNNs and a
single trained RNN. We carefully cross validated the RNN training procedure, objectives (adding
reconstruction costs at each layer as in [10], classifying each layer or only at the top node), regular-
ization, layer size etc. The best performance was still lacking compared to 128 random RNNs ( 2%
difference) and training time is much longer. With a more efficient GPU-based implementation it
might be possible to train many RNNs in the future.

Number of random RNNs: Fig. 4 (center) shows that increasing the number of random RNNs
improves performance, leveling off at around 64 on this dataset.

RGB & depth combinations and features: Fig. 4 (right) shows that combining RGB and depth
features from RNNs improves performance. The two modalities complement each other and produce
features that are independent enough so that the classifier can benefit from their combination.

Global autoencoder on pixels and depth. In this experiment we investigate whether CNN-RNNs
learn better features than simply using a single layer of features on raw pixels. Many methods such
as those of Coates and Ng [28] show remarkable results with a single very wide layer. The global
autoencoder achieves only 61.1%, (it is overfitting at 93.3% training accuracy). We cross-validated
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Figure 4: Model analysis on the development split (left and center use rgb only). Left: Compar-
ison of two layer CNN with CNN-RNN with different pre-processing ([17] and [13]). TNN is a
tree structured neural net with untied weights across layers, tRNN is a single RNN trained with
backpropagation (see text for details). The best performance is achieved with our model of random
RNNs (marked with x). Center: Increasing the number of random RNNs improves performance.
Right: Combining both modalities improves performance to 88% on the development split.

over the number of hidden units and sparsity parameters). This shows that even random recursive
neural nets can clearly capture more of the underlying class structure in their feature representations
than a single layer autoencoder.

4.3 Error Analysis

Fig. 5 shows our confusion matrix across all 51 classes. Most model confusions are very reasonable
showing that recursive deep learning methods on raw pixels and depth can give provide high quality
features. The only class that we consistently misclassify are mushrooms which are very similar in
appearance to garlic.

Fig. 6 shows 4 pairs of often confused classes. Both garlic and mushrooms have very similar
appearances and colors. Water bottles and shampoo bottles in particular are problematic because the
IR sensors do not properly reflect from see through surfaces.

5 Conclusion

We introduced a new model based on a combination of convolutional and recursive neural networks.
Unlike previous RNN models, we fix the tree structure, allow multiple vectors to be combined,
use multiple RNN weights and keep parameters randomly initialized. This architecture allows for
parallelization and high speeds, outperforms two layer CNNs and obtains state of the art performance
without any external features. We also demonstrate the applicability of convolutional and recursive
feature learning to the new domain of depth images.
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