Skip to main content

Advertisement

Log in

Nephronectin is Decreased in Metastatic Breast Carcinoma and Related to Metastatic Organs

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Breast cancer causes death mostly due to distant metastasis. During metastasis, cancer cells create new conditions in which normal tissue structure can be disturbed. Nephronectin, which is the primary ligand for α8β1 integrin, plays an important role in kidney development. There are conflicting findings regarding its role in cancer progression and metastasis, especially in breast carcinoma. The aim of this study was to determine changes in nephronectin expression in primary tumor tissues and metastatic visceral organs, using metastatic and non-metastatic cell lines in a mouse model of breast cancer. In our study, 4T1-Liver Metastatic and 4T1-Heart Metastatic cells, originally derived from 4T1-murine breast carcinoma, and non-metastatic 67NR carcinoma cells were used. Cancer cells were injected orthotopically into the mammary gland of 8–10 week-old Balb-c mice. Primary tumors, lung, liver tissues were collected on 12th and 25th days after the tumor injection. Immunohistochemistry was used to determine expression of nephronectin in tissues. We also investigated the expression levels of the protein by using western blot technique. We found that lung and liver tissue of control animals (not-injected with tumor cells) expressed nephronectin which was lost in animals bearing metastatic tumor for 25 days. In accordance, nephronectin staining of lung and liver was preserved in animals injected with non-metastatic 67NR tumors. These results demonstrate that loss of nephronectin may play an important role in formation metastatic milieu for cancer cells. This is the first study demonstrating that tumor-induced loss of nephronectin expression in visceral organs in which metastatic growth takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gaffan J, Dacre J, Jones A (2006) Educating undergraduate medical students about oncology: a literature review. J Clin Oncol 24(12):1932–1939. doi:10.1200/JCO.2005.02.6617

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  3. Weigelt B, Peterse JL, van’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5(8):591–602. doi:10.1038/nrc1670

    Article  PubMed  CAS  Google Scholar 

  4. Scully OJ, Bay BH, Yip G, Yu Y (2012) Breast cancer metastasis. Cancer Genomics Proteomics 9(5):311–320

    PubMed  CAS  Google Scholar 

  5. Erin N, Kale S, Tanriover G, Koksoy S, Duymus O, Korcum AF (2013) Differential characteristics of heart, liver, and brain metastatic subsets of murine breast carcinoma. Breast Cancer Res Treat 139(3):677–689. doi:10.1007/s10549-013-2584-0

    Article  PubMed  CAS  Google Scholar 

  6. Willis AL, Sabeh F, Li XY, Weiss SJ (2013) Extracellular matrix determinants and the regulation of cancer cell invasion stratagems. J Microsc 251(3):250–260. doi:10.1111/jmi.12064

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3(12). doi:10.1101/cshperspect.a005058

  8. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3(5):362–374. doi:10.1038/nrc1075

    Article  PubMed  CAS  Google Scholar 

  9. Egeblad M, Rasch MG, Weaver VM (2010) Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol 22(5):697–706. doi:10.1016/j.ceb.2010.08.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cheung KJ, Ewald AJ (2014) Illuminating breast cancer invasion: diverse roles for cell-cell interactions. Curr Opin Cell Biol 30:99–111. doi:10.1016/j.ceb.2014.07.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hubmacher D, Apte SS (2013) The biology of the extracellular matrix: novel insights. Curr Opin Rheumatol 25(1):65–70. doi:10.1097/BOR.0b013e32835b137b

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406. doi:10.1083/jcb.201102147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18(6):884–901. doi:10.1016/j.devcel.2010.05.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296(5570):1046–1049. doi:10.1126/science.1067431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Brandenberger R, Schmidt A, Linton J, Wang D, Backus C, Denda S, Muller U, Reichardt LF (2001) Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin alpha8beta1 in the embryonic kidney. J Cell Biol 154(2):447–458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Morimura N, Tezuka Y, Watanabe N, Yasuda M, Miyatani S, Hozumi N, Tezuka Ki K (2001) Molecular cloning of POEM: a novel adhesion molecule that interacts with alpha8beta1 integrin. J Biol Chem 276(45):42172–42181. doi:10.1074/jbc.M103216200

    Article  PubMed  CAS  Google Scholar 

  17. Erin N, Wang N, Xin P, Bui V, Weisz J, Barkan GA, Zhao W, Shearer D, Clawson GA (2009) Altered gene expression in breast cancer liver metastases. Int J Cancer 124(7):1503–1516. doi:10.1002/ijc.24131

    Article  PubMed  CAS  Google Scholar 

  18. Erin N, Boyer PJ, Bonneau RH, Clawson GA, Welch DR (2004) Capsaicin-mediated denervation of sensory neurons promotes mammary tumor metastasis to lung and heart. Anticancer Res 24(2B):1003–1009

    PubMed  Google Scholar 

  19. Erin N, Zhao W, Bylander J, Chase G, Clawson G (2006) Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells. Breast Cancer Res Treat 99(3):351–364. doi:10.1007/s10549-006-9219-7

    Article  PubMed  CAS  Google Scholar 

  20. Kuphal S, Wallner S, Bosserhoff AK (2008) Loss of nephronectin promotes tumor progression in malignant melanoma. Cancer Sci 99(2):229–233. doi:10.1111/j.1349-7006.2007.00678.x

    Article  PubMed  CAS  Google Scholar 

  21. Eckhardt BL, Parker BS, van Laar RK, Restall CM, Natoli AL, Tavaria MD, Stanley KL, Sloan EK, Moseley JM, Anderson RL (2005) Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol Cancer Res 3(1):1–13

    PubMed  CAS  Google Scholar 

  22. Erin N, Nizam E, Tanriover G, Koksoy S (2015) Autocrine control of MIP-2 secretion from metastatic breast cancer cells is mediated by CXCR2: a mechanism for possible resistance to CXCR2 antagonists. Breast Cancer Res Treat 150(1):57–69. doi:10.1007/s10549-015-3297-3

    Article  PubMed  CAS  Google Scholar 

  23. Erin N, Podnos A, Tanriover G, Duymus O, Cote E, Khatri I, Gorczynski RM (2014) Bidirectional effect of CD200 on breast cancer development and metastasis, with ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response. Oncogene. doi:10.1038/onc.2014.317

  24. Erin N, Ulusoy O (2009) Differentiation of neuronal from non-neuronal substance P. Regul Pept 152(1–3):108–113. doi:10.1016/j.regpep.2008.10.006

    Article  PubMed  CAS  Google Scholar 

  25. Green JR (2003) Antitumor effects of bisphosphonates. Cancer 97(3 Suppl):840–847. doi:10.1002/cncr.11128

    Article  PubMed  Google Scholar 

  26. Cohen MB, Griebling TL, Ahaghotu CA, Rokhlin OW, Ross JS (1997) Cellular adhesion molecules in urologic malignancies. Am J Clin Pathol 107(1):56–63

    Article  PubMed  CAS  Google Scholar 

  27. Takagi J (2004) Structural basis for ligand recognition by RGD (Arg-Gly-asp)-dependent integrins. Biochem Soc Trans 32(Pt3):403–406. doi:10.1042/BST0320403

    Article  PubMed  CAS  Google Scholar 

  28. Kahai S, Lee SC, Lee DY, Yang J, Li M, Wang CH, Jiang Z, Zhang Y, Peng C, Yang BB (2009) MicroRNA miR-378 regulates nephronectin expression modulating osteoblast differentiation by targeting GalNT-7. PLoS One 4(10):e7535. doi:10.1371/journal.pone.0007535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Linton JM, Martin GR, Reichardt LF (2007) The ECM protein nephronectin promotes kidney development via integrin alpha8beta1-mediated stimulation of Gdnf expression. Development 134(13):2501–2509. doi:10.1242/dev.005033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kahai S, Lee SC, Seth A, Yang BB (2010) Nephronectin promotes osteoblast differentiation via the epidermal growth factor-like repeats. FEBS Lett 584(1):233–238. doi:10.1016/j.febslet.2009.11.077

    Article  PubMed  CAS  Google Scholar 

  31. Patra C, Ricciardi F, Engel FB (2012) The functional properties of nephronectin: an adhesion molecule for cardiac tissue engineering. Biomaterials 33(17):4327–4335. doi:10.1016/j.biomaterials.2012.03.021

    Article  PubMed  CAS  Google Scholar 

  32. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  PubMed  CAS  Google Scholar 

  33. Inacio Pinto N, Carnier J, Oyama LM, Otoch JP, Alcantara PS, Tokeshi F, Nascimento CM (2015) Cancer as a Proinflammatory environment: metastasis and cachexia. Mediat Inflamm 2015:791060. doi:10.1155/2015/791060

    Article  CAS  Google Scholar 

  34. Erin N, Korcum AF, Tanriover G, Kale S, Demir N, Koksoy S (2015) Activation of neuroimmune pathways increases therapeutic effects of radiotherapy on poorly differentiated breast carcinoma. Brain Behav Immun 48:174–185. doi:10.1016/j.bbi.2015.02.024

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Assistant Professor Ozgun Kosaner for proof reading the article. This study was supported by Akdeniz University Scientific Research Projects with project number 2013.02.122.005 and a Master of Science thesis of Sayra Dilmac.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamze Tanriover.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilmac, S., Erin, N., Demir, N. et al. Nephronectin is Decreased in Metastatic Breast Carcinoma and Related to Metastatic Organs. Pathol. Oncol. Res. 24, 679–688 (2018). https://doi.org/10.1007/s12253-017-0289-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-017-0289-0

Keywords

Navigation