
Support for Various HTTP Methods on the Web

Sawood Alam and Charles L. Cartledge and Michael L. Nelson
{salam,ccartled,mln}@cs.odu.edu

Department of Computer Science
Old Dominion University
Norfolk, VA 23529 USA

Abstract. We examine how well various HTTP methods are supported
by public web services. We sample 40,870 live URIs from the DMOZ
collection (a curated directory of World Wide Web URIs) and found
that about 55% URIs claim support (in the Allow header) for GET and
POST methods, but less than 2% of the URIs claim support for one or
more of PUT, PATCH, or DELETE methods.

1 Introduction

Tim Berners-Lee invented the World Wide Web (WWW) in 1989 [7, 4, 6, 5].
Since then the Web has evolved in many phases. There is no agreed upon well-
defined name for these phases, but for the sake of understanding some people
have divided these phases as follows [15, 16, 19, 18, 1, 24]:

Web 0.0: This was the pre-web era when the Internet was developing.
Web 1.0: The initial phase of the Web is called “Read-Only Web”. Since the

invention of the Web until 1999 there were mostly static HTML pages con-
nected with hyperlinks. Very few people were responsible for putting infor-
mation online that could be searched and consumed by others. There was
very limited flow of information from the user to the server. This phase is
also called as “shopping cart and static web” era.

Web 2.0: The second major change in the Web came when collaborative appli-
cations like wikis, self-publishing platforms like blogs, and social media like
Twitter, Flickr, and YouTube emerged. This phase is called “Read-Write
Web” or “Read-Write-Publish Era”. In this phase the consumer of the con-
tent became first class producer of the content as well. This increased par-
ticipation from the Internet user increased the size of the Web and reduced
the gap between the number of producers and the number of consumer of
the information on the Web.

Web 3.0: The third major change in the Web began after the inclusion of se-
mantic markup. This phase is called “Read-Write-Execute Web”, “Semantic
Web”, or “Semantic Executing Web”. Semantic markups allow machines to
understand and link information available on the Web. Usage of Resource De-
scription Framework (RDF) [25] and Web Ontology Language (OWL) [21]
makes the machines as the first class consumer of the information on the
Web.

ar
X

iv
:1

40
5.

23
30

v1
 [

cs
.N

I]
 8

 M
ay

 2
01

4

Table 1: HTTP Method Mapping with Resource Action
HTTP Method Resource Action

GET Retrieve representation of a resource.
POST Create a new resource.
PUT Overwrite an existing resource or create new if it does not exist.
PATCH Partially update a resource.
DELETE Delete a resource.

Web 4.0: This is the upcoming Web or the next Web. It is still in the very early
stage of taking its shape, hence it is not very clear what it will eventually
look like. It is called “Read-Write-Execution-Concurrency Web” or “Open,
Linked, and Intelligent Web”. In this phase of the Web, machines will not
only be able to consume and understand linked semantic data but will also
be able to produce information based on their learning. Machines will be
able to communicate with other machines and resources like we humans do.
Because of this nature, it is also called “Symbiotic Web”.

Web 5.0: This phase is an idea in progress and definition is yet unknown. It is
called “Symbionet Web” which will be very decentralized in nature in which
devices/machines will be able to explore other interconnected devices and
create the model of the Web. It will also have the component of emotion
while the current Web is emotionally neutral.

While the Web was evolving, the underlying web communication protocol
known as Hypertext Transfer Protocol (HTTP) [12] was also evolving to fulfil
the increased communication needs. Initially the HTTP methods defined in the
protocol were not fully implemented by web servers. As the Web graduated from
Web 1.0 to 2.0 and beyond, the need for a web-scale distributed software architec-
ture increased which gave birth to REST (REpresentational State Transfer) [13,
14]. HTTP and its extensions define a rich set of methods to interact with web
resources. To perform CRUD (Create, Read, Update, and Delete) operations on
a resource, commonly used HTTP methods are GET, POST, PUT, PATCH, and
DELETE. Table 1 summarizes various HTTP methods and their corresponding
resource actions. Utilizing these HTTP methods for appropriate resource actions
along with media types and relation types in an HTTP communication is called
REST.

While REST utilizes various HTTP methods for various resource actions, Re-
mote Procedure Call (RPC) encourages application designers to define their own
application specific methods and rely only on GET and POST HTTP methods.
Limiting a web service to only GET and POST methods has some consequences
that lead to non-standard usage of these methods. For example, POST is a
non-idempotent method, if it is used to update a resource in place of PUT,
which is an idempotent method, then it will violate the definition of the POST
method. An idempotent method is a method in which multiple requests of the
same method have the same effect on the resource as if the request was made
just once. Another consequence is related to the cacheability of methods. For

Table 2: Example URI Constructs in REST vs. RPC
REST RPC

GET /tasks GET /list all tasks.php
GET /tasks/1 GET /show task details.php?id=1
POST /tasks POST /create new task.php
PATCH /tasks/1 POST /update task status.php
DELETE /tasks/1 GET /delete task.php?id=1

Table 3: HTTP Method Support
Method LAMP HTML Ajax

GET Default Support Link, Form Yes

POST Default Support Form Yes

HEAD Default Support None Yes

OPTIONS Default Support None Yes

PUT Extra Config. None Yes

DELETE Extra Config. None Yes

PATCH Extra Config. None Yes

instance, response to a GET request is cacheable, if GET method is used in
place of a non-cacheable method like DELETE, it may result in undesired ef-
fects. Table 2 compares REST and RPC style URIs to illustrate utilization of
HTTP methods in REST and application specific methods in RPC.

Unfortunately, many web services do not support all of the HTTP methods.
Hence, a PATCH request (or other methods like PUT or DELETE) may cause
the server to respond with 501 Not Implemented or other failure responses. For
example, the default Apache web server setup returns 405 Method Not Allowed

in response to a PUT request.

Table 3 lists common HTTP methods and their support in web browsers
and the most common LAMP1 servers stack. It shows that Apache web server
requires extra configuration in order to support PUT, DELETE and PATCH
methods. Also, pure HTML has no interface to issue these methods from the
browser except by using Ajax2 requests.

We explore the support of HTTP methods on the live Web, that are re-
sponsible for RESTful HTTP communication. Previously, we performed a brief
analysis of HTTP method support to show the limited support of many HTTP
methods [3]. In this paper, we examine server response headers on live URIs
sampled from the DMOZ [23]. The DMOZ is an Open Directory Project that
maintains the curated directory of World Wide Web URIs, currently listing over
5 million URIs.

1 Linux, Apache, MySQL, and PHP, Perl or Python.
2 Asynchronous JavaScript and XML

2 Background

The REST application architecture allows clients to interact with any RESTful
service without any out-of-band information. To facilitate this feature, REST
applies the principle of Hypermedia as the Engine of Application State (HA-
TEOAS) [14]. According to this principle, the interaction with a REST service
begins from a well-known URI and from there the REST service guides the
clients with the help of links corresponding to state transitions (the same way
people follow links in the HTML pages). A client with generic understanding of
relation types and media types can easily follow the options towards its interac-
tion path. There are two ways for a client to discover the capabilities of a server
for a given resource URI: the OPTIONS method and the “Allow” header.

The OPTIONS method is utilized to discover the capabilities of the server
and specific HTTP methods supported for the given URI. Figure 1 illustrates
an OPTIONS request and corresponding response from the server.

1 $ curl -I -X OPTIONS http://www.cs.odu.edu/
2 HTTP/1.1 200 OK
3 Date: Wed, 07 Aug 2013 23:11:04 GMT
4 Server: Apache/2.2.17 (Unix) PHP/5.3.5 mod_ssl/2.2.17 OpenSSL/0.9.8q
5 Allow: GET,HEAD,POST,OPTIONS
6 Content-Length: 0
7 Content-Type: text/html
8

9 $

Fig. 1: OPTIONS Request and Response

The “Allow” header is an entity header that gives the comma-separated list
of allowed methods on a given resource URI. This header should be included
in the response to an OPTIONS request. According to the HTTP specification,
the “Allow” header must be present if the server returns a 405 (Method Not

Allowed) response. Line 5 of Figure 1 illustrates an “Allow” header which tells
the client that only GET, HEAD, POST, and OPTIONS methods are supported
for this URI.

3 Methodology

In order to find the supported methods on URIs we issued OPTIONS request on
them. If a web server implements OPTIONS method properly, it returns “Allow”
header in the response to the OPTIONS request and lists the supported methods
on the given URI.

To measure the distribution of HTTP method support on the Web, we ran-
domly chose 100,000 HTTP URIs from a historical collection of the DMOZ
that was created for a prior study [2]. These URIs include both live and dead
URIs. Initial sampling of the URIs was done without considering any filtering

Fig. 2: Process of Method Support Analysis.

or enforced distribution of Top Level Domains (TLDs) or the path depth of the
URIs. Figure 2 illustrates the process utilized in the analysis of support of HTTP
methods on the Web.

According to the HTTP specification, all general-purpose servers must sup-
port GET and HEAD methods. In practice though, HEAD is not always sup-
ported. Hence for further analysis, we decided to filter only URIs that return a
200 OK response to a GET request and we ignored all the other URIs. Out of
those 100,000 URIs, there were only 40,870 URIs responding with a 200 status

Table 4: Path Depths for URIs in Sample Set
Path Depth Example Occurrence Percentage

0 example.com 27718 67.820%
1 example.com/a 5141 12.579%
2 example.com/a/b 4616 11.294%
3 example.com/a/b/c 1689 4.133%
4 example.com/a/b/c/d 765 1.872%
5 example.com/a/b/c/d/e 405 0.991%
6 example.com/a/b/c/d/e/f 373 0.913%
7 example.com/a/b/c/d/e/f/g 128 0.313%
8 example.com/a/b/c/d/e/f/g/h 29 0.071%
9 example.com/a/b/c/d/e/f/g/h/i 3 0.007%
10 example.com/a/b/c/d/e/f/g/h/i/j 1 0.002%
11 example.com/a/b/c/d/e/f/g/h/i/j/k 1 0.002%
12 example.com/a/b/c/d/e/f/g/h/i/j/k/l 1 0.002%

Fig. 3: Path Depth for URIs in Sample Set.

code. Other URIs returned 3xx, 4xx, 5xx status codes, request timeout, or Do-
main Name Service (DNS) errors. Table 5 shows the distribution of live URIs
over various TLDs while Table 4 and Figure 3 show the distribution of path
depths in the sample set. The path depth here refers to the number of forward
slashes (/) excluding the trailing slash, if any. Also, the path depth does not
consider hash portion of the URI or any query parameters. These 40,870 live
URIs belong to 33,183 different domains. We issued an OPTIONS request on
each of those 40,870 live URIs to collect data about supported methods from
the “Allow” response header as illustrated in Figure 1. Table 6 shows the distri-

Table 5: TLD Distribution for Sample Set URIs
TLD Occurrence Percentage

.com 18089 44.260%

.org 3592 8.789%

.net 2039 4.988%

.edu* 875 2.141%

.gov* 358 0.876%
Others 15917 38.945%

bution of response codes for OPTIONS requests over 40,870 URIs. We did not
follow the 58 (0.142%) URIs returning a redirection status code. We do not feel
that these URIs would have any significant impact on the results.

4 Scenarios

We will look at samples of four different OPTIONS requests with different re-
sponses. The first request as illustrated in Figure 4a returned 501 Not Implemented

response, which means it does not recognize OPTIONS method, although the
URI associated with this request supports POST, GET, HEAD, PUT, and
DELETE methods (according to its documentation,) but there is no RESTful
way to discover the server capabilities.

The second request as illustrated in Figure 4b does recognize the OPTIONS
method, but returned 405 Not Allowed response. According to the HTTP spec-
ification, in case of 405 response, an “Allow” header must be present in the re-
sponse, but in this second request the server does not honor this rule, hence we
cannot query supported methods.

The third request as illustrated in Figure 4c returned limited method support
(only GET and POST methods listed in Table 3).

Finally, the fourth request as illustrated in Figure 4d returned support for
all the methods listed in Table 3. We did not check to see if the URIs respond
to the methods returned in the “Allow” header.

5 Response Issues

During the analysis of the response we found various issues including incorrect
implementation, malformed headers, and lack of compliance with the standards.

5.1 Client-dependent Response

In our experiment, we found that some servers change their response based on
the “User-Agent” string passed in the request. Figure 5 illustrates such a case
where if we do not pass a “User-Agent” it returns response code 405, but if we
pass “Mozilla” or some other common user-agents, the response code changes to
200 along with changed response headers.

Table 6: Response Codes for OPTIONS Requests
Status Code Occurrence Percentage

200 37347 91.380%

301 6
302 50
303 2
3xx 58 0.142%

400 44
401 30
403 1112
404 326
405 1312
406 7
407 1
411 3
417 1
422 1
4xx 2837 6.942%

500 100
501 479
502 34
503 14
5xx 627 1.534%

999 1 0.002%

Total 40870

5.2 Inaccuracies

Figure 5 illustrates a discrepancy in the response where Line 2 says, 405 Method

Not Allowed, but in the Line 3 OPTIONS method is listed in the “Allow”
header.

Further down in Figure 5 at Line 12 it says, 200 OK, but there is no “Allow”
header in the response headers below.

In Figure 4b the response code is 405 Not Allowed, hence it must tell what
methods are allowed, but it does not return “Allow” header in the response.

5.3 Malformed Allow Headers

In our experiments we found various types of malformed “Allow” headers. We
have categorized these malformed “Allow” headers in order to study their sever-
ity.

Special Characters: Figure 6a illustrates an “Allow” header with control char-
acters in it. In our experiment we observed three URIs with this issue. These
“Allow” headers have returned various special characters including Start of Text

1 $ curl -I -X OPTIONS http://fluiddb.fluidinfo.com/about
2 HTTP/1.1 501 Not Implemented
3 Server: nginx/1.1.19
4 Date: Wed, 07 Aug 2013 21:09:15 GMT
5 Content-Type: text/html; charset=utf-8
6 Content-Length: 150
7 Connection: keep-alive
8 X-Fluiddb-Request-Id: API-9006-20130807-210915-18792385
9 X-Fluiddb-Error-Class: UnsupportedMethod

10

11 $

(a) Method Not Implemented.

1 $ curl -I -X OPTIONS http://dev.bitly.com/
2 HTTP/1.1 405 Not Allowed
3 Content-Type: text/html
4 Date: Wed, 07 Aug 2013 22:24:05 GMT
5 Server: nginx
6 Content-Length: 166
7 Connection: keep-alive
8

9 $

(b) Method Not Allowed.

1 $ curl -I -X OPTIONS http://www.cs.odu.edu/
2 HTTP/1.1 200 OK
3 Date: Wed, 07 Aug 2013 23:11:04 GMT
4 Server: Apache/2.2.17 (Unix) PHP/5.3.5 mod_ssl/2.2.17 OpenSSL/0.9.8q
5 Allow: GET,HEAD,POST,OPTIONS
6 Content-Length: 0
7 Content-Type: text/html
8

9 $

(c) Limited CRUD Support.

1 $ curl -I -X OPTIONS http://www.parasitesandvectors.com/
2 HTTP/1.1 200 OK
3 Set-Cookie: UUID=6818dd14-085e-4a50-806a-deab9b907585; Path=/
4 Allow: GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS, PATCH
5 Content-Type: text/html
6 X-Cacheable: NO
7 Server: BioMed Central Web Server 1.0
8 Content-Length: 0
9 Accept-Ranges: bytes

10 Date: Wed, 07 Aug 2013 23:02:22 GMT
11 Connection: keep-alive
12

13 $

(d) Full CRUD Support.

Fig. 4: OPTIONS Method Scenarios.

(STX), Unit Separator (US), Record Separator (RS), Shift Out (SO), Cancel
Character (CAN), and Device Control 4 (DC4).

Malformed Method Names: Figure 6b illustrates an “Allow” header which
has malformed method name. It looks as if the value of the Content-Type header
was concatenated with the value of “Allow” header. There were 45 such URIs

1 $ curl -I -X OPTIONS http://www.romebedbreakfast.it/
2 HTTP/1.1 405 Method Not Allowed
3 Allow: GET, HEAD, OPTIONS, TRACE
4 Content-Type: text/html
5 Server: Microsoft-IIS/7.5
6 X-Powered-By: ASP.NET
7 X-Powered-By-Plesk: PleskWin
8 Date: Sun, 28 Apr 2013 23:50:39 GMT
9 Content-Length: 1293

10

11 $ curl -I -X OPTIONS -A "Mozilla" http://www.romebedbreakfast.it/
12 HTTP/1.1 200 OK
13 Date: Sun, 28 Apr 2013 23:53:17 GMT
14 Server: Apache
15 Vary: Accept-Encoding
16 X-Powered-By: PleskLin
17 Cache-Control: max-age=0, no-cache
18 Content-Length: 0
19 Connection: close
20 Content-Type: text/html
21

22 $

Fig. 5: Response Changes for Different User-Agents

in our sample collection with this issue. We further investigated and found that
they all belong to one domain (but different sub-domains).

Lower-case Method Names: Figure 6c illustrates lower-cased method names
in the “Allow” header which is a violation of the specification. According to the
HTTP/1.1 specification, method names are case sensitive and general purpose
methods like GET and POST are defined as upper-case tokens in the specifi-
cation. There was only one occurrence of lower-case method names in our test
set.

Space-separated Method Names: The list of methods in the “Allow” header
should be separated by commas. Figure 6d illustrates an instance where the
method names are separated by spaces.

Miscellaneous: Other issues that we observed in our test set include repeated
methods and blank methods. Figure 6a illustrates both of these issues. Although
the grammar for “Allow” header allows one or more commas and optional linear
white space (LWS) as the method name separator, also it does not mention
anywhere that the list should have unique values in it, hence at the time of
parsing the values one needs to be careful about these.

6 Results

Table 7 quantifies support of individual HTTP methods described in RFCs [12,
17, 8, 11, 9, 10, 26] over a collection of 40,870 live sample URIs. In Table 8 com-
mon HTTP methods are grouped together to represent the method support
distribution for each category. These categories include:

1 $ curl -I -X OPTIONS http://shwepla.net/index.htm
2 HTTP/1.1 200 OK
3 Date: Tue, 17 Sep 2013 16:35:11 GMT
4 Server: Apache
5 Allow: OPTIONS,,HEAD,O[RS],HEAD,HEAD,,HEAD,,HEAD,[STX],,HEAD,POST,,HEAD,
6 ,HEAD,,HEAD,[STX],/vhosts/,GET,HEAD
7 X-Powered-By: PleskLin
8 Content-Length: 0
9 Connection: close

10 Content-Type: text/html
11 X-Pad: avoid browser bug
12

13 $

(a) Allow Header with Control Characters.

1 $ curl -I -X OPTIONS http://zpiktures.free.fr/
2 HTTP/1.1 405 Method Not Allowed
3 Date: Tue, 17 Sep 2013 17:53:53 GMT
4 Server: Apache/ProXad [Apr 20 2012 15:06:05]
5 Connection: close
6 Allow: GET, HEAD, POST, PUT, DELETEtext/html; charset=iso-8859-1
7 Cache-Control: no-cache, no-store, must-revalidate
8 Content-Type: text/html; charset=iso-8859-1
9

10 $

(b) Allow Header with Malformed Method Names.

1 $ curl -I -X OPTIONS http://www.atexpc.ro/
2 HTTP/1.1 405 METHOD NOT ALLOWED
3 Date: Mon, 29 Apr 2013 04:57:46 GMT
4 Server: Apache/2.2.16 (Debian)
5 Allow: get, head
6 Vary: Accept-Encoding
7 Content-Length: 0
8 Content-Type: text/html; charset=utf-8
9

10 $

(c) Allow Header with Lower-case Method Names.

1 $ curl -I -X OPTIONS http://www.pembrokepools.co.uk/
2 HTTP/1.1 200 OK
3 Date: Mon, 29 Apr 2013 05:01:19 GMT
4 Server: ECS (ams/498C)
5 Allow: GET POST OPTIONS
6

7 $

(d) Allow Header with Space-separated Method Names.

Fig. 6: Malformed Allow Headers.

Safe: The safe category refers to the set of methods that are only intended to
retrieve information without changing the state of the resource. These safe
methods include HEAD, GET, and OPTIONS.

Non-safe: The non-safe category refers to the set of methods that changes the
state of the resource and it includes POST, PUT, PATCH, and DELETE
methods.

Idempotent: The idempotent category refers to the set of methods in which
multiple requests of the same method have the same effect on the resource as
if the request was made just once. All the safe methods are idempotent but

Table 7: Summarized Method Support Distribution
Method RFC Supported (Count) Percentage

GET 2616 22899 56.029%
HEAD 2616 22879 55.980%
OPTIONS 2616 22726 55.606%
POST 2616 16497 40.365%
TRACE 2616 14946 36.570%
DELETE 2616 735 1.798%
PUT 2616 696 1.703%
CONNECT 2616 422 1.033%

PROPFIND 2518 1226 3.000%
COPY 2518 1218 2.980%
LOCK 2518 1196 2.926%
UNLOCK 2518 1190 2.912%
MOVE 2518 542 1.326%
PROPPATCH 2518 536 1.311%
MKCOL 2518 523 1.280%

MKDIR 1813 6 0.015%
RMDIR 1813 6 0.015%

PATCH 5789 418 1.023%

REPORT 3253 1 0.002%

ACL 3744 1 0.002%

SEARCH 5323 611 1.495%

INDEX Unknown 6 0.015%
NNOC Unknown 1 0.002%

Table 8: Categorized Method Support Distribution
Category Supported (Count) Percentage

Safe 22691 55.520%
Non-safe 418 1.023%
Idempotent 633 1.549%
GET and POST 16497 40.365%
All 418 1.023%

some non-safe methods are idempotent too. In our experiment, idempotent
methods include HEAD, GET, OPTIONS, PUT, and DELETE.

GET and POST: HTML form element supports GET and POST methods
and these methods are widely used in RPC services, hence we have catego-
rized these methods separately.

All: This category accumulates all the seven methods listed in Table 3, com-
monly used in RESTful services. It does not include all the methods listed
in Table 7.

Table 7 provides quantities of individual methods, but it does not show how
much those quantities overlap among various methods. Table 9 on the other hand
represents an interleaved distribution of support of common HTTP methods.

Table 9: Interleaved Method Support Distribution
OPTIONS HEAD GET POST PUT DELETE PATCH Count %

No No No No No No No 17951 43.922

No Yes No No No No No 4 0.010

No Yes No Yes No No No 2 0.005

No Yes Yes No No No No 99 0.242

No Yes Yes Yes No No No 38 0.093

No Yes Yes Yes Yes No No 46 0.113

No Yes Yes Yes Yes Yes No 4 0.010

Yes No No No No No No 3 0.007

Yes No No No No Yes No 17 0.042

Yes No No No Yes No No 1 0.002

Yes Yes No Yes No No No 14 0.034

Yes Yes Yes No No No No 6264 15.327

Yes Yes Yes No No Yes No 13 0.032

Yes Yes Yes No Yes No No 10 0.024

Yes Yes Yes No Yes Yes No 11 0.027

Yes Yes Yes Yes No No No 15746 38.527

Yes Yes Yes Yes No Yes No 23 0.056

Yes Yes Yes Yes Yes No No 2 0.005

Yes Yes Yes Yes Yes Yes No 204 0.499

Yes Yes Yes Yes Yes Yes Yes 418 1.023

This table can be used to determine the quantity of support for any combina-
tion of common HTTP methods. If a combination is missing from the table, it has
zero occurrences in our sample set. According to this table, 43.922% live URIs
either did not return an “Allow” header in the response to an OPTIONS request
or they did not claim support for any of the seven common HTTP methods in
the “Allow” header. 15.327% live URIs claim support for OPTIONS, HEAD,
and GET, but no other common methods. 38.527% live URIs claim support for
OPTIONS, HEAD, GET, and POST, but no other common methods. There are
only 1.023% URIs that claim support for all seven common HTTP methods in
their “Allow” header in response to an OPTIONS request. All other combina-
tions in Table 9 constitute only 1.201% combined.

Table 10 shows the method support distribution in various web server soft-
ware. Apache [27] being the most popular web server, served 26,071 URIs in our
sample set and returned “Allow” header in 14,037 responses. Over 53% URIs
served by Apache has claimed support for OPTIONS, HEAD, and GET meth-
ods, about 47% claimed support for POST method, while only about 2% or
less supported PUT, DELETE, and PATCH methods. URIs using Microsoft IIS
server [22] claimed better support for OPTIONS, HEAD, and GET methods
than those using Apache, but support for the rest of the methods was poorer
than Apache. We have abbreviated names of OPTIONS, DELETE, and PATCH
methods to OPT., DEL., and PAT. respectively to accommodate them in the

Table 10: Method Support Distribution across Web Server Software in %
Server Count Allow OPT. HEAD GET POST PUT DEL. PAT.

Apache 26071 14037 53.623 53.803 53.807 47.900 2.002 1.837 1.550
IIS 6371 5494 86.172 85.921 85.921 31.392 0.314 0.879 0.016
Nginx 3278 733 22.270 22.270 22.300 20.836 0.732 0.732 0.092
Squeegit 696 696 100.000 100.000 100.000 0.000 0.000 0.000 0.000
ATS 562 560 99.644 99.644 99.644 99.644 0.000 0.000 0.000
Squid 369 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
YTS 362 189 52.210 52.210 52.210 4.144 0.000 0.000 0.000
AkamaiGHost 342 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LiteSpeed 300 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Lighttpd 138 45 32.609 32.609 32.609 32.609 0.000 0.000 0.000
Zeus 139 55 0.000 39.568 39.568 0.000 0.000 0.000 0.000
Unknown 773 385 49.288 49.677 49.806 14.360 5.692 5.692 0.129
Others 1344 411 24.777 30.357 30.506 21.057 6.399 6.473 0.670

Table 11: Method Support Distribution over Path Depths in %
Depth Count Allow OPT. HEAD GET POST PUT DEL. PAT.

0 27718 15302 54.863 55.058 55.123 39.895 1.490 1.465 0.978
1 5141 3601 69.092 69.986 70.006 51.099 1.751 1.731 1.264
2 4616 2325 49.588 50.347 50.368 34.879 2.643 2.708 1.040
3 1689 1085 63.766 64.121 64.121 43.280 2.191 2.191 1.303
4–12 1706 612 35.229 35.873 35.873 27.608 1.993 1.934 0.703

table. It is worth noting that the values returned in the “Server” header were
long strings that we have normalized to their common names. In our sample set
773 URIs that did not return “Server” header, about 385 URIs of those have re-
turned “Allow” header, we have accumulated then under “Unknown” category.
Any server that has less than 100 occurrences in our sample set was accumulated
under “Others” category. Not all of the names in the Table 10 are first class web
servers, for example, Squid is a proxy server, ATS (Apache Traffic Server) and
AkamaiGHost are caching servers, and Squeegit is the name chosen by a free
web hosting company called Tripod.com [20] for their web server. In our sample
set, some server names were overwritten by the server control panel software.
According to the HTTP specification, the “Server” header contains information
about the origin server, hence proxy servers must not overwrite this header, they
should use a “Via” header [12] instead.

Table 11 is similar to Table 10, except it represents analysis of HTTP method
support on URIs with different path depths as opposed to the server software
used. It shows that the URIs with one path depth have over all better method
support as compared with the URIs with zero path depth (root URIs). URIs
with two path depth are dominating on PUT and DELETE method support
while URIs with three path depth dominate on PATCH method support. There

were not enough samples in higher order path depths (4–12), hence we have
combined them together.

All results in Tables 7, 8, 9, 10, and 11 are based on the “Allow” header
in the response of an OPTIONS request. We did not check to see if the URIs
respond to the methods returned in the “Allow” header. Actual support may
differ from what was claimed in the “Allow” header. For instance, all 40,870 live
URIs returned 200 OK response to a GET request, while only 22,899 (56.029%)
live URIs claimed support for GET method in the “Allow” header.

7 Conclusion

We have sampled 40,870 live URIs from DMOZ archived collection. We issued
OPTIONS request against all the sampled URIs to collect their response code
and response headers. Then we looked at the “Allow” response header to identify
the supported HTTP methods. We found that 43.922% live URIs either did not
return an “Allow” header in the response to an OPTIONS request or they did
not claim support for any of the seven common HTTP methods in the “Allow”
header. 15.327% live URIs claim support for OPTIONS, HEAD, and GET, but
no other common methods. 38.527% live URIs claim support for OPTIONS,
HEAD, GET, and POST, but no other common methods. There are only 1.023%
URIs that claim support for all seven common HTTP methods in their “Allow”
header in response to an OPTIONS request. We did not check to see if the URIs
respond to the methods returned in the “Allow” header.

References

1. Sareh Aghaei, Mohammad Ali Nematbakhsh, and Hadi Khosravi Farsani. Evolu-
tion of the World Wide Web: from Web 1.0 to Web 4.0. International Journal of
Web & Semantic Technology, 3(1), 2012.

2. Scott G Ainsworth, Ahmed AlSum, Hany SalahEldeen, Michele C Weigle, and
Michael L Nelson. How Much of the Web Is Archived? In Proceedings of the
11th annual international ACM/IEEE joint conference on Digital libraries, pages
133–136. ACM, 2011.

3. Sawood Alam, Charles L. Cartledge, and Michael L. Nelson. HTTP Mailbox -
Asynchronous RESTful Communication. Technical Report arXiv:1305.1992, 2013.

4. Tim Berners-Lee. WWW: Past, present, and future. Computer, 29(10):69–77,
1996.

5. Tim Berners-Lee. Realising the Full Potential of the Web. Technical Communica-
tion: Journal of the Society for Technical Communication, 46(1):79–82, 1999.

6. Tim Berners-Lee. Talk to the LCS 35th Anniversary celebrations. Cambridge,
MA, URL: http://www.w3.org/1999/04/13-tbl.html, 1999.

7. Tim Berners-Lee. History of the Web. http://webfoundation.org/about/vision/history-
of-the-web/, 2014.

8. B. Callaghan, B. Pawlowski, and P. Staubach. NFS Version 3 Protocol Specifica-
tion. RFC 1813, June 1995.

9. G. Clemm, J. Amsden, T. Ellison, C. Kaler, and J. Whitehead. Versioning Exten-
sions to WebDAV (Web Distributed Authoring and Versioning). RFC 3253, March
2002.

10. G. Clemm, J. Reschke, E. Sedlar, and J. Whitehead. Web Distributed Authoring
and Versioning (WebDAV) Access Control Protocol. RFC 3744, May 2004.

11. L. Dusseault and J. Snell. PATCH Method for HTTP. RFC 5789, March 2010.
12. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, June 1999.
13. R.T. Fielding. Architectural Styles and the Design of Network-based Software Ar-

chitectures. PhD thesis, University of California, 2000.
14. R.T. Fielding and R.N. Taylor. Principled design of the modern web architecture.

ACM Transactions on Internet Technology (TOIT), 2(2):115–150, 2002.
15. Tom Fleerackers. Web 1.0 vs Web 2.0 vs Web 3.0 vs Web 4.0 A birds eye on

the evolution and definition. http://flatworldbusiness.wordpress.com/flat-
education/previously/web-1-0-vs-web-2-0-vs-web-3-0-a-bird-eye-on-the-
definition/, 2011.

16. Brian Getting. Basic Definitions: Web 1.0, Web. 2.0, Web
3.0. Practical eCommerce: Insights for Online Merchants
(http://www.practicalecommerce.com/articles/464-Basic-Definitions-Web-1-0-
Web-2-0-Web-3-0), 2007.

17. Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. HTTP Extensions
for Distributed Authoring – WEBDAV. RFC 2518, February 1999. Obsoleted by
RFC 4918.

18. Jim Hendler. Web 3.0 Emerging. Computer, 42(1):111–113, 2009.
19. Ora Lassila and James Hendler. Embracing “Web 3.0”. Internet Computing, IEEE,

11(3):90–93, 2007.
20. Lycos. Tripod.com. http://www.tripod.lycos.com/, 1992.
21. Deborah L McGuinness and Frank Van Harmelen. OWL Web Ontology Language

Overview. W3C Recommendation, 10(2004-03):10, 2004.
22. Microsoft. Internet Information Services. http://www.iis.net/, 1995.
23. Netscape. DMOZ Open Directory Project. http://www.dmoz.org/, 1998.
24. Karan Patel. Incremental journey for world wide web: Introduced with web 1.0 to

recent web 5.0–a survey paper. International Journal, 3(10), 2013.
25. RDF Working Group. Resource Description Framework (RDF).

http://www.w3.org/RDF/, 2004.
26. J. Reschke, S. Reddy, J. Davis, and A. Babich. Web Distributed Authoring and

Versioning (WebDAV) SEARCH. RFC 5323, November 2008.
27. The Apache Software Foundation. Apache HTTP Server.

http://projects.apache.org/projects/http server.html, 1995.

