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ABSTRACT

Earth’s tectonic processes regulate the formation of continental crust, control its unique deep water
and carbon cycles, and are vital to its surface habitability. A major driver of steady-state plate tec-
tonics on Earth is the sinking of the cold subducting plate into the underlying mantle. This sinking
is the result of the combined effects of the thermal contraction of the lithosphere and of metamorphic
transitions within the basaltic oceanic crust and lithospheric mantle. The latter of these effects is
dependent on the bulk composition of the planet, e.g., the major, terrestrial planet-building elements
Mg, Si, Fe, Ca, Al, and Na, which vary in abundance across the Galaxy. We present thermodynamic
phase-equilibria calculations of planetary differentiation to calculate both melt composition and man-
tle mineralogy, and show that a planet’s refractory and moderately-volatile elemental abundances
control a terrestrial planet’s likelihood to produce mantle-derived, melt-extracted crusts that sink.
Those planets forming with a higher concentration of Si and Na abundances are less likely to undergo
sustained tectonics compared to the Earth. We find only 1/3 of the range of stellar compositions
observed in the Galaxy is likely to host planets able to sustain density-driven tectonics compared to
the Sun/Earth. Systems outside of this compositional range are less likely to produce planets able
to tectonically regulate their climate and may be inhospitable to life as we know it.

cayman.unterborn@asu.edu
∗ SESE Exploration Fellow
† Carnegie Origins Fellow, jointly appointed between Carnegie DTM & Observatories

ar
X

iv
:1

70
6.

10
28

2v
2 

 [
as

tr
o-

ph
.E

P]
  3

 J
ul

 2
01

7

mailto: cayman.unterborn@asu.edu


2

1. INTRODUCTION

The Earth is unique in our Solar System. It is the only planet with plate tectonics and liquid water
on the surface. It is not known, however, the extent to which the Earth is unique among all terrestrial
planets beyond our Solar System. The Kepler mission’s discoveries establish that Earth-sized planets
are common in the Galaxy, with as many as 11% of Sun-like stars hosting planets 1-2 times the radius
of the Earth and receiving comparable solar flux (Marcy et al. 2014; Fulton et al. 2017). Together with
other discovery campaigns, we know now of many exoplanets with masses and radii consistent with
being terrestrial, rock/metal-dominated planets, rather than gas-dominated. The degree to which
these planets can maintain surface oceans, plate tectonics or even be considered “Earth-like” is not
known and is a complex function of the planet’s composition, formation, and dynamical state (e.g.
Foley 2015; Foley & Driscoll 2016). We assert that for a planet to be “Earth-like” and habitable,
it must be habitable in the same manner as the Earth. At a minimum this means the planet must
sustain surface liquid water for millions to billions of years. . Because stable liquid water exists in
a relatively narrow range in temperatures and pressures, the planet must have a process to regulate
atmospheric temperatures. On the Earth, moderate temperatures are maintained by the incoming
solar radiation combined with moderate greenhouse warming from CO2, H2O, and CH4. Therefore,
supply and regulation of these gases is key to Earth’s, and thus “Earth-like” planet’s climate. This
definition is in contrast to the typical one for “Earth-like,” in which a planet is defined simply as one
with a bulk density characteristic of being roughly that of a mixture of metal ± rock.

The Earth’s atmospheric regulatory processes and aqueous chemistry arise from tectonics: the re-
cycling of material between a planet’s surface and mantle. For Earth, the recycling process manifests
as special case of tectonics, plate tectonics, in which oceanic crust continuously subducts into the
interior and convective upwellings returning some material to the surface. This Earth-scale trans-
port of material produces the buoyant continental crust and releases and sequesters CO2 through
weathering of silicate rocks and arc volcanism at subduction zones (Velbel 1993; Brady 1991; Sleep
& Zahnle 2001; Foley 2015; Foley & Driscoll 2016). In contrast a terrestrial planet without tectonic
processes, such as one with a rigid lid like Mars, or undergoing episodic overturn like Venus, does
not have a steady state cycling of material between the surface and interior. Even if Venus had a
lower surface temperature, it is unable to regulate atmospheric CO2, which may be rapidly released
in pulses during overturn or a consequence of its solidification from a magma ocean (Hamano et al.
2013). The lack of standing continents and the formation of surface carbonic acid on Venus does not
allow CO2 to be efficiently buried, and it instead accumulates in the atmosphere, creating a runaway
greenhouse.

The planetary controls that lead to mobile-lid regimes, including plate tectonics, and static-lid
regimes are a matter of debate even for the well-determined compositional, thermal, and structural
parameters found in the Solar System (e.g. Moresi & Solomatov 1998). Models of large, terres-
trial planets (so-called Super-Earths) have concluded that plate tectonics could be inevitable due to
interior-to-surface heat transfer, surface gravity, and fault strength (Valencia et al. 2007; van Heck
& Tackley 2011), while other models, focused on the fault strength integral to subduction initiation,
have come to the opposite conclusion that plate tectonics are unlikely (e.g. O’Neill & Lenardic 2007).
More general models find the tectonic state of a super-Earth is a function of planet size, incident solar
radiation, and atmospheric composition (e.g. Foley et al. 2012). Each of these models, however, sim-
ply scale the Earth in composition and structure and sought only to understand how changes in the
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physical parameters of a planet affected tectonics, rather than address the much more complicated
(and data-lacking) question of how planet chemical diversity affects tectonics.

An alternate approach is to assess probabilistically, rather than definitively, the relative likelihood
of tectonics on exoplanets in individual systems by examining the effect of planetary chemistry on
plate tectonics (Unterborn et al. 2014; Unterborn et al. 2015; Stamenković & Seager 2016). In this
study, we quantify the effect of planet composition on a vital aspect of sustaining plate tectonics
on terrestrial planets over billion year timescales: the sinking forces of the exocrust into a planet’s
mantle. We therefore address a minimum criterion for plate tectonics: whether or not the surface
crusts sink into the mantle due to buoyancy forces arising from thermal and chemical differences
between the surface crust and the interior mantle. In the most general sense, tectonic processes of
both the Earth and Venus are driven by buoyancy forces. The magnitude of this force is proportional
to the integrated density difference between the sinking surface material and the surrounding mantle.
These density contrasts are due to the composition and thermal state of the surface material compared
to the mantle. Those planetary compositions in which crustal material is buoyant even when forced
downward through crustal thickening or contraction have no mechanism for cycling crustal material
into the interior via subduction. For those planets that have a buoyancy force less than the Earth,
though, there is a lower probability of plate tectonics compared to Earth due to the reduced negative
buoyancy (that is downward force) available to drive plate tectonics. Those systems are less likely
to produce planets with lithospheric material of a composition able to sink via buoyancy forces to
∼100 km and thereby produce arc volcanism, will not be able to maintain long-lived temperate,
atmospheres, nor will they exhibit top-down, buoyancy driven, steady-state crustal recycling as part
of tectonic processes.

The Earth’s subducting lithosphere is composed of two parts: a 5-10 km thick basaltic layer lying
on top of a 50-80 km thick, cold, and rigid layer of lithospheric mantle (e.g. Fischer et al. 2010), which
formed as a result of the cooling of the surface of Earth followed by induration from a magma ocean
for 50-200 million years. The basaltic layer is formed through eruption at mid-ocean ridges as the
result of decompression melting of the passive upwelling of the convecting mantle. The composition
of oceanic lithosphere is therefore controlled by the temperature and composition of the mantle.

Once the subducting basaltic crust reaches a depth of 35-50 km below the surface, pressure-induced
mineral metamorphism transforms the basaltic rock into rock denser than the surrounding mantle
(∆ρ ∼ +100 kg m−3) through the formation of garnet as it replaces orthopyroxene with minor spinel
(Frost 2008, Supplemental Figure S1). This basalt-eclogite transition marks the first of two major
metamorphic processes in the basaltic layer responsible for the negative buoyancy that causes plates
to sink and continue the cycling from surface to mantle and back. The second phase transition occurs
at 300 km below the surface, with excess silica (SiO2) undergoing the coesite-stishovite transition,
providing an additional density increase, further promoting sinking. The subducting plate is also
thermally contracted relative to the surrounding mantle. The resulting density contrast produces an
additional downward buoyancy force, controlled by the temperature difference between subducting
plate and surrounding mantle.

Pressure- and temperature-induced phase transitions also occur within the mantle surrounding the
subducting plate. However, because of the different temperatures of the mantle relative to the plate,
these transitions happen at different depths for each. At a depth near 410 km within the Earth,
a phase transition occurs in mantle olivine [(Mg2+,Fe2+)SiO4], transforming it to wadsleyite. This
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phase transition is what delineates Earth’s upper mantle from the transition zone (Supplementary
Figure S1). The depth of transition from olivine to wadsleyite is shallower at lower temperatures
such that olivine in the relatively colder subducting plate will transform into the denser wadsleyite
at depths shallower than the transition zone. This introduces a wedge of more dense material in the
sinking plate above the 410 km transition, further promoting the sinking of subducting plates.

These phase changes, and the relative depths of their occurrence, result in a chemical buoyancy
force, Fc, on the plate. The integrated density contrast between the plate and mantle due to thermal
differences, including depth to pressure-induced transitions, results in a thermal buoyancy force, Ft.
High-temperature atmospheres limit the cooling of the plate on the surface (Foley & Driscoll 2016),
which will reduce the magnitude of Ft and lower the likelihood of plate tectonics on these planets.
To date, there are no definitive observations of terrestrial exoplanet atmospheres and thus inference
of mobile versus stagnant-lid states through atmospheric observation is currently beyond the reach
of exoplanetary science.

Together, Fc + Ft for Earth’s subducting plates contribute a net buoyancy of ∼ −(2 − 3) ∗ 1013

N per meter length of subducted plate downward (recalculated from Kirdyashkin & Kirdyashkin
2014). While the processes responsible for the initiation of subduction are not well-understood on
Earth, plates having sufficient negative buoyancy at the depth of the basalt-eclogite transition is a
necessary precondition for incipient subduction and prevention of a stagnant lid (van Hunen et al.
2002). These upper mantle forces, together with the shear traction and induced flow of a slab inciting
downward mantle motion, constitute one of two major driving forces of plate tectonics (Conrad &
Lithgow-Bertelloni 2002).

An exoplanet’s composition and mineralogy are not directly observable and are instead inferred
from mass-radius relations (e.g. Seager et al. 2007; Weiss & Marcy 2014; Wolfgang et al. 2016;
Unterborn et al. 2016). Given only a planet’s mass and radius, there is considerable degeneracy in
planet composition and structure. As noted by Dorn et al. (2015), this degeneracy is reduced when
the stellar composition of terrestrial planet-building elements (Mg, Si, Fe) is adopted as a proxy for
planetary composition. This is well grounded for the Sun-Earth system due to the refractory nature
of these elements (Unterborn et al. 2016, , Supplementary Table S1) and has yet to be tested for
Venus as there are no definitive measurements of its interior composition or structure. Relative to
solar (Asplund et al. 2005), the abundances of the major terrestrial planet-building elements Mg,
Si, and Fe vary between 10 and 400% of solar in large stellar surveys (e.g. Adibekyan et al. 2012;
Bensby et al. 2014; Hinkel et al. 2014; Brewer et al. 2016). Variations in stellar (Mg+2Si)/Fe affect
an exoplanet’s core mass fraction and the ratio Mg/Si affects the dominant minerals of the silicate
mantle. Decreasing Mg/Si will lead to a shift in the dominance of the upper-mantle mineral Mg2SiO4

(olivine), to MgSiO3 (pyroxene), to SiO2 (quartz; Unterborn et al. 2016; Unterborn & Panero 2017).
While oxidation state of a planet will affect each of these simple assumptions somewhat, the extent
of these oxidation-reduction reactions is a complex function of disk chemistry and the planet’s initial
thermal profile and subsequent evolution, each of which are poorly understood areas in exoplanetary
science. To first order, though, the assumption that stellar refractory composition roughly mirrors
planetary refractory composition provides testable predictions of planetary mass for those planets
orbiting stars of non-Solar composition (Unterborn & Panero 2017).

We therefore adopt the stellar compositional diversity observed in the Galaxy as a proxy for the
compositional diversity of terrestrial planets. From this starting point, we calculate the composition,
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Figure 1. Ternary diagrams of stellar Mg, Fe and Si & Al, Ca and Na molar abundances for our adopted
sample of FGK stars (black, Adibekyan et al. 2012) (black, Adibekyan et al., 2012;) and Kepler host stars
found in the APOGEE survey DR13 (red, SDSS Collaboration et al. 2016) and the yellow diamond is Solar
(Asplund et al. 2005). The Adibekyan et al. (2012) database is based on spectra of resolution R ∼ 110,000
and signal-to-noise ratio ranging from ∼20 to ∼2000. Fifty-five percent of the spectra have a signal-to-noise
greater than 200, with only 17% lower than 100. The average observational uncertainty is 25% in relative
abundances, well inside the range observed abundance variation in this sample. The APOGEE data set
is based on spectra of resolution R ∼22,000 and signal-to-noise ranging from ∼30 to ∼900. Seventy-five
percent of the spectra have signal-to-noise greater than 100, with only 3% percent lower than 50. While our
sample is scaled from solar abundances, changes in these abundances will affect the abundances of each star
uniformly and thus the observed elemental ratios and relative buoyancy forces would not change across our
sample.

mineralogy of the melt-extracted crust and residual mantle as relative contrast in buoyancy between
each. We thus quantify how the composition of a rocky planet affects the likelihood of sustaining
plate tectonics over billion-year timescales. The melt-extracted crust is created when solid-state
convection develops in the bulk silicate planet (BSP) after the differentiation of a core and the
adiabatic rise of rock towards the surface leads to partial melting of the mantle, producing a melt-
extracted crust of different composition from the initial bulk silicate composition. A key feature
of continual plate tectonics over geologic timescales is this melt-extracted crust subducting along
with underlying lithospheric mantle into the interior. The relative magnitude of buoyancy contrast
between the melt-extracted crust and residual mantle, therefore, will lead to a greater or lesser
likelihood of plate tectonics in comparison to the Earth.

2. RESULTS

We calculate the melt composition and stable mineralogy of the bulk silicate planet and exocrust,
benchmarking our model to the Earth as derived from solar (See Supplementary Materials; Sup-
plementary Figure S1) for hypothetical planetary compositions derived from two samples of stellar
compositions. The first includes 1063 FGK stars from Adibekyan et al. (2012), which represent
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thin and thick-disk stars with a metallicity range from -0.8 < [Fe/H]† < 0.6, over 100 of which are
known to host (mostly gas-dominated) planets. Of this first sample, we thermodynamically model
the composition and buoyancy of a subset of 609 stellar compositions that are within the internally
consistent MELTS database (Ghiorso et al. 2002), 57 of which are known to host planets. We find a
chemical buoyancy (Fc) of these systems ranges from −7.5 ∗ 1012 N m−1 (sinks) to 4.0 ∗ 1012 N m−1

(floats) while our model Earth produces buoyancy force of ∼ −2.0 ∗ 1012 N m−1 (Figure 2).
The second sample of stellar compositions comes from the Apache Point Observatory Galactic

Evolution Experiment (APOGEE, Wilson et al. 2010; Majewski et al. 2015), which is part of the
Sloan Digital Sky Survey IV (SDSS-IV; Blanton et al. 2017). From the public APOGEE Data Release
13 (DR13, SDSS Collaboration et al. 2016), we selected the stars known to host small planets (Rp

≤1.6 R⊕) from the Kepler transiting planet survey, totaling 123 stars with a metallicity range from
-0.54 < [Fe/H] < 0.36. Of these, we thermodynamically model the composition and buoyancy of a
subset of 89 stellar compositions that are within the internally consistent MELTS database (Ghiorso
et al. 2002). We find a chemical buoyancy of these systems ranges from −10 ∗ 1012 N m−1 (sinks) to
3.6 ∗ 1012 N m−1 (floats).

Of terrestrial planets with compositions represented by the variation in both stellar datasets, 19%
would produce exocrusts entirely buoyant than their BSP throughout the entire upper mantle (Fc >
0), and therefore unable to subduct (Figure 2). Furthermore, 61% of the Adibekyan sample and
41% of the Kepler sample produces plates more chemically buoyant than that of our model Earth
(Fc > Fc−Earth; Figure 2) and therefore less likely to host plate tectonics than the Earth.

This variation in buoyancy forces is mainly caused by the enrichment of Si and alkali elements (Na,
K) within the melt-extracted crust. Partial melting of typical mantle rocks leads to enrichment of
silica and alkalis in the melt compared to the parent rock. We find those planetary compositions with
lower alkali and silica abundance, such as those crustal materials that form on Earth with basaltic
composition, are most likely to sink, while those with greater alkaline and silicic compositions are
less likely (Figure 3; Supplementary Figure S2). This is consistent with Earth’s tectonics, in which
low-density and alkali-rich, andesitic continental crust does not subduct (Cloos 1993).

The magnitude of chemical buoyancy is, therefore, closely tied to the abundance of sodium and
potassium in the BSP due to their incompatibility in melting processes (Figure 2). Because Na is
roughly 15 times more abundant than K for the Sun (Lodders 2003), we focus on Na as a controlling
alkali in the buoyancy calculations. Because all alkalis are moderately volatile in the planetary
condensation process (Lodders 2003), their abundances are not likely to be mirrored in any orbiting
terrestrial planets due to their fractionation relative to the refractory elements (e.g. Mg, Si, Fe) in
the planetary formation process. For this model, we assume an incomplete accretion of Na due to
volatile loss during planet formation in proportions similar to Sun-Earth fractionation for each star
in our sample (δNa−Sun/Earth = (Na/Si)Earth / (Na/Si)Sun = 0.26 by mole; McDonough 2003; Asplund
et al. 2005). Chemical buoyancy is then a function of the total Na in the star as well as the degree
of Na volitalization during accretion, δNa:

Fc ≈ −1.15 + 16.6
(
[Na/Si] + log10

(
δNa/δNa−Sun/Earth

))
∗ 1012Nm−1 (1)

when [Na/Si] is scaled from Asplund et al. (2005) (Supplementary Figure S3), 78% of the variation
in Fc can be explained by variation in [Na/Si]. For a given stellar [Na/Si] value, 95% of Fc values

† [Fe/H]= log (NFe/NH)star− log (NFe/NH)Sun, where NFe and NH are the number of atoms of Fe and H respectively
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Figure 2. Histograms of buoyancy forces calculated using our model for our sample of 609 Adibekyan
et al. (2012) stars (gray) and 89 Kepler planet hosts (purple) with compositions inside the MELTS database
(Ghiorso et al. 2002). Those modeled from stellar composition are shown in red. The buoyancy force and
bulk composition of model Earth is shown as a light gray dashed line.

fall within ±1012 N m−1, which is a more complex function of the refractory element composition of
the planet and must be derived through the methods outlined here. This correlation between Fc and
Na abundance allows us to estimate the chemical buoyancy of the 454 stars in the Adibekyan et al.
(2012) dataset whose mantle compositions were not located within the MELTS database and were
generally those stars with bulk Fe/Si < 0.95 (Bulk Earth Fe/Si = 1; McDonough 2003). For those
stars in the Adibekyan dataset, we find 28% are of compositions likely to produce melt-extracted
crust that remains buoyant relative to their mantles (Fc > 0), with 69% less chemically buoyant
than the Earth (Figure 2). The Kepler dataset shows a similar trend, with 22% of stars likely to
produce crusts with positive chemical buoyancy and 60% with crustal buoyancy forces greater than
the Earth. Each of these systems are therefore less likely than the Earth or completely unlikely to
maintain long-term, steady-state tectonics.

When δNa is twice δNa−Sun/Earth (δNa = 0.52), only 1% of stars within the Adibekyan sample and 4%
of the Kepler sample produce any plates with a negative chemical buoyancy force (Fc < 0), whereas
all but fourteen stellar compositions in our sample of 1186 stars produce negatively buoyant plates
when δNa is half of δNa−Sun/Earth (δNa = 0.13; Figure 4). The likelihood of producing negative chemical
buoyancy in melt-extracted surface plates is therefore very sensitive to δNa and weakly dependent
upon bulk mantle composition. Stars with greater Na abundance than Solar must retain less Na
when forming terrestrial planets to create negatively buoyant plates at depth. The same is true for
those stars of Solar Na composition with greater δNa compared to the Earth and Sun (δNa > 0.26).
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Figure 3. Alkali abundance as a function of silica of the exocrust compositions for our sample of Kepler
planet-host (diamonds) and Adibekyan et al. (2012) stars (circles). Color is a function of the chemical
buoyancy as calculated from a thermally equilibrated, 5% melt layer. Points outlined are those with known
planets (exoplanets.org). The green box represents the Earth Range of average Earth basaltic compositions
of Gale et al. (2013). The composition of Mercury’s Northern Volcanic Plains and Intercrater Plains and
Heavily Cratered Terrains (diamonds; Namur et al. 2016) and Mars’ type 1 and type 2 crusts (squares,
including K2O; McSween et al. 2003) are included. Venus’ alkali composition has yet to be determined
(Treiman 2013). Each crustal composition of Mercury and Mars fall within the positively buoyant andesitic
field, despite 3 of the 4 measurements containing Na2O abundances within the Earth-like range.

These high Na planetary systems may initiate subduction, but due to their higher positive chemical
buoyancy force, they are unlikely to continue to do so (Cloos 1993). As mantle temperatures increase
in this stagnant-lid planet, any volatiles contained within the partially subducted plate will degass
into the atmosphere, thus entirely negating any long-term, continuous tectonic regulation of climate.

Our compositionally focused approach is a tool to examine the influence of a host star’s refractory
and moderately volatile composition on a key aspect of planetary dynamics: top-down, density-
driven plate tectonics. This model attempts to capture only the most general details of terrestrial
planetary formation, differentiation, and evolutionary process with the sinking of a surface plate
through a planet’s mantle being a consequence of the difference in density between the mantle and
crust. This model treat the complex processes of accretion, formation of overlying continents, and
prolonged geochemical processing as discrete processes at a fixed pressure, temperature, and oxygen
fugacity. While not meant to be strictly prescriptive, these results demonstrate first-order trends and
controlling factors in the geochemical consequences of variable compositions of terrestrial planets.

This approach predicts a lack of plate tectonics on Venus and the potential for (transient) plate
tectonics on Mars. For planets with significant thermally insulating atmospheres, more heat is
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Figure 4. Chemical buoyancy force (Fc) as a function of bulk planetary Mg and Si normalized to Fe (by
mole) for values for three values of δNa. Filled circles are those calculations presented here in Figures 2 and
3 for the Adibekyan et al. (2012) dataset (black) and Kepler hosts (red). Open symbols are those buoyancy
forces calculated from the relationship between stellar [Na/Si] and Fc (Equation 1, Supplementary Figure
S3) for the Adibekyan et al. (2012) stars (squares) and Kepler hosts (circles). The 1063 stars in the stellar
survey of Adibekyan et al. (2012) show ∼2.5 orders of magnitude difference in total Na, halving or doubling
δNa from the Solar value represents the entire sample either producing none and all plates being negatively
chemically buoyant. The index (Mg+2Si)/Fe is both a primary control on the compositional extent of the
thermodynamic database (Ghiorso et al. 2002) as well as defining the approximate proportions of core and
mantle of an associated terrestrial planet (Unterborn et al. 2016).

retained at the surface, limiting the cooling of warming the plate (Foley 2015; Foley & Driscoll 2016).
A surface temperature 450 K greater than Earth such as Venus will significantly reduce Ft, while
Fc−V enus ∼ Fc−Earth, such that the sum predicts Venus is less likely than Earth to undergo tectonics
without having to consider the strength or thickness of surface rocks (Foley et al. 2012; Bercovici &
Ricard 2014). In the case of Mars, the lack of water and rapid heat loss due to its small size limits
the likelihood for long-term plate tectonics, although it may have experienced subduction in the past
(Sleep 1994).

One of the most significant neglected variables is the abundance of water and carbon in the planet’s
interior, which are sensitive to nebula composition, formation processes and location in the nebula,
and subsequent evolution. The volatile abundance in terrestrial planets is not well constrained in
planetary formation models, both for our Solar System and exoplanetary systems. While planetary
H2O and CO2 abundances may inform the scale of exoplanetary oceans and climate, the planet’s
relative abundance of moderately volatile elements such as Na is a first-order control on the likelihood
of regulating these important aspects of exoplanet habitability via long-term plate tectonics. This
approach, therefore, points to the importance of addressing the thermal and dynamic controls for
both the highly and moderately volatile abundances of planets in formation models.

Of the small exoplanets discovered to date (R ≤ 1.6 Earth radii), few have both size and mass mea-
surements, from which mean density may be calculated. Mean density is a non-unique function of
the relative proportions of core, mantle, and gaseous envelope. Of those mass/radius measurements
sufficiently dense to suggest the planets are terrestrial, planetary compositions and structures are
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indistinguishable from one another due to large observational uncertainties. We offer a complemen-
tary approach for those planets inferred to be terrestrial by providing a framework for quantifying
an exoplanet’s potential geochemical dynamics. Indeed, these results represent the first observa-
tional metric with which to gauge the probability of an exoplanetary system to maintain steady
state surface-to-interior geochemical cycling and tectonic behavior with the potential to regulate
atmospheric temperatures over long timescales. Furthermore, the connection between stellar Na
abundance, degree of volatilization, and surface plate chemical buoyancy point to the importance of
adopting a comparative tool to ascertain the likelihood of exoplanetary plate tectonics compared to
the Earth. The exoplanetary field needs to refine models of not only the volatile condensation and
accretion in planetary systems, but track the fractionation and dynamics of the refractory and moder-
ately volatile elements within the disk as well. Furthermore, geochemical and geophysical experiments
and models must be expanded to those compositions relevant to planets of non-Earth/Solar com-
position. The upcoming James Webb Space Telescope will provide opportunities for time-intensive
observational studies to follow up terrestrial exoplanet atmospheric conditions, and our framework
provides a strategy to identify those planetary systems most worthy of follow up observations. Bulk
planet density is only one factor in determining whether a planet is “Earth-like.” It is only through
this holistic approach to characterizing exoplanets, combining data and models from across scientific
fields, that we will truly calibrate the likelihood of an extrasolar planet to be behaviorally Earth-like
and habitable to life as we know it.
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3. SUPPLEMENTARY MATERIAL

3.1. Stellar Composition Data

We apply this Earth-benchmarked model to two samples of stars with abundances available for 9
elements (Mg, Fe, Si, Ca, Al, Ni, Ti, Cr and Na). First is the survey of F, G and K stars in the
Galaxy of Adibekyan et al. (2012) and the other is a sample of 123 known planet-hosting stars whose
abundances were available within the APOGEE Data Release 13 (DR13 SDSS Collaboration et al.
2016). Where available, only those stars with C/O < 0.8 were chosen. We use 1186 total stars in our
model. These stars represent both thin and thick-disk stars with a metallicity range from -0.8 to 0.6
[Fe/H], of which 235 have detected planets. Of these stars, 698 have compositions that fall within
the thermodynamic databases used in this study (Figure 2). For those stars outside of the database,
we estimate the crustal Na content and chemical buoyancy force through a linear fit of these values
for only those 609 stars that were within the MELTS database and in the Adibekyan et al. (2012)
dataset (Supplemental Figure S3).

We note that a separate publication is in progress (Teske et al. in prep) that will discuss the
reliability of FGK dwarf star abundances produced by the APOGEE automated analysis pipeline
(ASPCAP; Garćıa Pérez et al. 2016, ; Holtzmann et al. in prep, Jonsson et al, in prep). Initial
results (also discussed in Wilson et al. in prep) suggest that, for solar-type stars, the Fe, Mg, and Si
abundances produced by ASPCAP are reliable at the ∼0.15 dex level. The ASPCAP Na abundances
appear to be less reliable, upon comparison with a small sample of values derived from optical data.
For consistency, we did not modify the DR13 APOGEE Na abundances to bring them into better
agreement with the optical data. We note that Figure 1 shows that the Adibekyan et al. (2012) and
the APOGEE samples have similar ranges in Na abundances.

3.2. Methods Summary

3.2.1. Planet Composition Model

There is extensive debate as to the exact nature of the Earth’s composition, from one closer to
a volatilized carbonaceous chondrite (McDonough & Sun 1995; McDonough 2003), to more similar
to enstatite chondrites (Javoy et al. 2010), to mixtures of carbonaceous chondrites and ordinary
chondrites (e.g. Fitoussi & Bourdon 2012). We instead adopt the simplest model of a composition
that is identical to the Sun in refractory elements, with an oxygen abundance fixed by the fO2 of
the condensing medium. For key moderately volatile elements such as Na, we assume an ad-hoc
condensation efficiency of 26% to reproduce the Earth’s bulk Na composition (Asplund et al. 2005;
McDonough 2003).

The condensation temperatures of the moderately volatile elements are highly correlated with
their abundances in ordinary and CI chondrites (Wai & Wasson 1977), indicating a condensation
process that is both composition and thermally-driven. However, because of the lower condensation
temperature of these elements relative to the refractories (e.g. Lodders 2003), there is likely radial
mixing of material within the disk. Recent planetary formation models (e.g. Raymond et al. 2006)
show water ice mixing from beyond 2.5 AU into the inner Solar System, while the degree of mixing
of the moderately volatile elements increases with the timescale of planet formation (Bond et al.
2010a,b). Other disk models addressing the mixing of moderately volatile elements in the disk
systematically over-predict the Na abundance in resulting planets compared to when attempting to
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Figure S1. Predicted phases (black) and densities (red) in this model (solid) compared to Earth reference
compositions (dashed, McDonough 2003)for (a) the bulk silicate Earth and (b) melt-extracted basalt as a
function of pressure. The model mantle is calculated along a 1600 K adiabat while the basalt is calculated
along a 1200 K adiabat. While the simplified model presented here does not reproduce the Earth in detail,
it does reproduce the correct minerals and pressures of phase transitions and magnitude of density discon-
tinuities. Our model mantle under predicts the olivine fraction in the mantle (55% vs. 60%) while our
model basalt predicts clinopyroxene at the expense of garnet relative to average basalt compositions under
predicting the density by no more than 3%. Garnet is the dense phase in the basalt-eclogite transition; this
model therefore represents a lower bound on the likelihood of subduction.

reproduce the Earth’s composition (Matsumura et al. 2016), likely due to neglecting not accounting
for volatile loss due to melting during planetary formation.

3.2.2. Planetary Differentiation Model

We model two stages of differentiation from the condensed planet composition: separation of the
iron-rich core from the bulk silicate planet (BSP) and crustal rock forming as a result of partial
melting (exocrust) from adiabatic decompression of the BSP. This simplified two-stage model broadly
reproduces the major element composition of the Earth, core-extracted bulk silicate Earth, and mid-
ocean ridge basalt (MORB) from the Solar composition (Supplementary Table S1). Differences
between our simplified Earth and the true Earth lead to comparable differences in modal abundance
of minerals in both MORB and Bulk Silicate Earth (BSE, Supplementary Figure S1). The resulting
absolute difference in calculated densities vary by 0.6% for the bulk silicate Earth and 2.6% for the
modeled MORB composition, with the depth-to-metamorphic transitions and the relative difference
between the transitions for each composition indistinguishable.

We model planetary differentiation through self-consistent thermodynamic modeling (Ghiorso &
Sack 1995; Ghiorso et al. 2002) of cooling the bulk composition from a molten planet to calculate
mineral and melt equilibria. The pressure and gas fugacity of the equilibrium calculations are chosen
to best reproduce the fraction of differentiated Fe alloy and the composition of the BSE and MORB



15

Table S1. Relative abundances of the most abundance elements considered in this model normalized to
100 atoms; Calculation of the BSP composition as separated from the planet composition is at 0.4 GPa
and fO2 = IQ-1.4 (Jones & Drake 1986), while the calculation of the MORB composition is assumed to
be at 5% melt fraction at 1 GPa (Mallmann & O’Neill 2009) and fO2=QFM+0.4 (Presnall et al. 2002).

Solar Solar Whole Earth Whole Earth BSE BSE MORB MORB

Element Actual1 Condensed† Actual2 Model Actual2 Model Actual3 Model

Mg 6.1 16.6 16.9 17.4 19.9 19.7 3.8-4.6 4.3

Si 5.8 15.8 15.3 14.4 15.9 16.4 20.0-17.7 19.1

Fe 5.1 13.8 15.3 14.4 2.4 2.4 2.8-3.9 2.4

Al 0.4 1.1 1.5 1.2 1.8 1.4 6.3-6.8 6.6

Ca 0.4 1.0 1.1 1.0 1.3 1.2 4.4-4.6 3.5

Na 0.3 0.7 0.2 0.2 0.2 0.2 1.6-2.5 3.5

O 82.0 51.0 49.6 51.3 58.5 58.7 60.0-61.2 60.5

Note—†Assuming 22.8% of Oxygen enters refractory phases per Unterborn & Panero (2017)
1Asplund et al. (2005)
2McDonough (2003)
3Gale et al. (2013)

composition from the Sun’s composition. We assume Si is primary the light element in the core
(Fischer et al. 2015) to be consistent with the Mg/Si ratio of the Earth’s mantle (McDonough &
Sun 1995; McDonough 2003; Unterborn et al. 2016). The melting of the mantle is calculated by
assuming an adiabatic rise of material to lower pressures until the solidus temperature of the rock
is reached. We calculate the primary crust composition to be that of the BSE at 5% melt fraction,
which is comparable to average mid-ocean ridge basalt (Supplementary Table S1) after imposing
a systematic correction to MgO to account for an over stabilization of clinopyroxene in MELTS
(Ghiorso et al. 2002). If no Si is present in the core, the mantle Si abundance would increase
accordingly. This would enrich the melt in silica, forming a crust of buoyant andesite rather than
basalt. We solve for the thermodynamically stable mineralogical host of each BSP and exocrustal
composition as a function of pressure and temperature using the HeFESTo (Stixrude & Lithgow-
Bertelloni 2005, 2011), open-source BurnMan (Cottaar et al. 2014; Unterborn et al. 2016) and the
Exoplanet-Pocketknife (available at https://github.com/ScottHull/Exoplanet-Pocketknife) software
packages. Temperatures are assumed to increase adiabatically, calculated self-consistently with depth.
The mantle adiabat is fixed at 1600 K, approximately the potential temperature of the Earth’s mantle,
while the average exocrust temperature is varied between 1000 K geotherms (∆T = 600K) and 1600
K (thermally equilibrated, ∆T = 0) From the mineralogy, compositions of the minerals, and modal
abundance of each, density profiles of profile are calculated from the mineral-specific equations of
state.
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Figure S2. Predicted mantle mineralogies along 1600 K (top) and 1000 K (bottom) geotherms of hypothet-
ical terrestrial planets about stars HD-19994 (left) and HD-89668 (right), representing extremes in Mg/Si.
cpx = clinopyroxene, opx = orthopyroxene, c2c = c2/c structured-phase of opx, mw= magnesiowustite, α-,
β-, γ-ol = olivine, wadsleyite, and ringwoodite, respectively. Densities (right axis) of the mantle along a
1600 K geotherm (solid red) are compared to the densities of the inferred slab along a 1000 K geotherm
(solid blue) are a function of the density of the exocrust (dashed cyan) and cold mantle lithosphere (dashed
red).

An additional consideration is the extent of melting for the formation of the exocrust, which is
a function of both mantle composition and temperature. We find that 95% of the sample set is
at 5% melt over a 65 K range, such that forming an exocrust of thickness comparable to that
of the Earth occurs over a relatively narrow range. For lower mantle temperatures, little-to-no
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Figure S3. Crustal Na2O wt% composition as a function of molar fraction Na and chemical buoyancy force
(Fc) as a function of stellar [Na/Si] for stars within the MELTS database. We adopt the Solar model of
Asplund et al. (2005) for calculation of [Na/Si]. Fc is modeled assuming Solar Na is reduced by 74% to the
Earth abundance relative to Si (Asplund et al. 2005; McDonough 2003).

melt may be produced, while greater mantle temperatures will produce greater crustal thickness.
For simplicity, we have considered a self-consistent adiabat applicable to the Earth with an Earth-
like potential temperature (1600 K). Increasing the potential temperature increases the extent of
melting, and consequently the thickness of melt-extracted crust. A greater extent of melting decreases
Na2O fraction in the melt for an approximately constant SiO2 fraction when melt fraction > 5%
(Ghiorso et al. 2002), both effects increase the downward force due to chemical buoyancy for a given
composition planet. The Earth’s mantle contains trace quantities of both H2O and CO2, which affect
the melting behavior of the passive upwelling mantle. Carbon increases the depth of initial melting
in the decompression melting of mantle peridotite. This melting is at significantly greater depths
than assumed in the models here, but contributes very small fractions of melt (<0.3%; Dasgupta &
Hirschmann 2006) and therefore unlikely to significantly affect the major element chemistry assumed
here. Similarly, water decreases the solidus temperature, increasing the depth of initial melting, but
not significantly altering the total melt fraction (Asimow & Langmuir 2003) and decreases the total
iron in the melt.

With a simple two-stage model, we do not address the chemical secular evolution of the mantle due
to the extraction of continental crust. As such, we overestimate the Na2O in the basaltic crust due to
neglecting the abundance of Na2O sequestered in the continental crust. For a continental crust with
3.6 wt% Na2O (Rudnick & Gao 2003), reducing the BSP Na2O abundance by about 5%, reducing
the Na2O content of the resulting melt-extracted crust about 77% of our predicted Na2O content,
consistent with typical MORB compositions. This suggests that early plate tectonic processes on
Earth required initial secular variation in bulk composition of incompatible elements before modern
plate tectonics could commence.
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The downward sinking force is quantified by the buoyancy of a potential sinking plate, made up
of 10 km-thick exocrust and 50 km-thick lithospheric mantle. For simplicity, we adopt the BSP
composition as the lithospheric mantle composition. The buoyancy force per unit length subducting
plate, Fb, is

Fb = t

∫ d

0

∆ρ (∆x, h,∆T ) g (h) dh (2)

where ∆ρ(∆x, h,∆T ) is the density difference between the down-going plate and mantle compositions
as a function of differences in the bulk compositions, x, depth, h, and the potential temperature
difference between the mantle and slab, ∆T , g is the acceleration due to gravity, d is the depth to
the base of the Earth’s transition zone (where the integrated density differences are a maximum),
and t is the slab thickness. While g is a function of the planet mass, the depth to metamorphic
transitions are pressure dependent, such that for a planet of equal core to mantle proportions, the
product of surface gravity and the depth at 25 GPa varies by just 1.3% over planets between 1 and 4.5
Earth masses. Therefore, we adopt Earth’s surface acceleration due to gravity and Earth’s pressure-
depth relationship as a representative model valid for the calculation of net negative buoyancy in
Super-Earths.

The magnitude of the chemical buoyancy force is closely tied to the abundance of Na2O in the BSP
due to its incompatibility in melting processes,

Fc ≈ (−9.38 + 1.64 ∗XNa2O) ∗ 1012Nm−1 (3)

where XNa20 is the weight percent Na2O in the planet’s mantle (XNa20 = 4.97 wt% for our model
Earth.


