Advertisement

SKIP ADVERTISEMENT

F.D.A. Panel Recommends Approval for Gene-Altering Leukemia Treatment

Emily Whitehead, 12, and her parents, Tom and Kari Whitehead, appeared at an F.D.A. hearing on Tuesday about a treatment for leukemia that had saved Emily’s life.Credit...T.J. Kirkpatrick for The New York Times

A Food and Drug Administration panel opened a new era in medicine on Wednesday, unanimously recommending that the agency approve the first-ever treatment that genetically alters a patient’s own cells to fight cancer, transforming them into what scientists call “a living drug” that powerfully bolsters the immune system to shut down the disease.

If the F.D.A. accepts the recommendation, which is likely, the treatment will be the first gene therapy ever to reach the market in the United States. Others are expected: Researchers and drug companies have been engaged in intense competition for decades to reach this milestone. Novartis is now poised to be the first. Its treatment is for a type of leukemia, and it is working on similar types of treatments in hundreds of patients for another form of the disease, as well as multiple myeloma and an aggressive brain tumor.

To use the technique, a separate treatment must be created for each patient — their cells removed at an approved medical center, frozen, shipped to a Novartis plant for thawing and processing, frozen again and shipped back to the treatment center.

A single dose of the resulting product has brought long remissions, and possibly cures, to scores of patients in studies who were facing death because every other treatment had failed. The panel recommended approving the treatment for B-cell acute lymphoblastic leukemia that has resisted treatment, or relapsed, in children and young adults aged 3 to 25.

One of those patients, Emily Whitehead, now 12 and the first child ever given the altered cells, was at the meeting of the panel with her parents to advocate for approval of the drug that saved her life. In 2012, as a 6-year-old, she was treated in a study at the Children’s Hospital of Philadelphia. Severe side effects — raging fever, crashing blood pressure, lung congestion — nearly killed her. But she emerged cancer free, and has remained so.

“We believe that when this treatment is approved it will save thousands of children’s lives around the world,” Emily’s father, Tom Whitehead, told the panel. “I hope that someday all of you on the advisory committee can tell your families for generations that you were part of the process that ended the use of toxic treatments like chemotherapy and radiation as standard treatment, and turned blood cancers into a treatable disease that even after relapse most people survive.”

The main evidence that Novartis presented to the F.D.A. came from a study of 63 patients who received the treatment from April 2015 to August 2016. Fifty-two of them, or 82.5 percent, went into remission — a high rate for such a severe disease. Eleven others died.

“It’s a new world, an exciting therapy,” said Dr. Gwen Nichols, the chief medical officer of the Leukemia and Lymphoma Society, which paid for some of the research that led to the treatment.

The next step, she said, will be to determine “what we can combine it with and is there a way to use it in the future to treat patients with less disease, so that the immune system is in better shape and really able to fight.” She added, “This is the beginning of something big.”

At the meeting, the panel of experts did not question the lifesaving potential of the treatment in hopeless cases. But they raised concerns about potentially life-threatening side effects — short-term worries about acute reactions like those Emily experienced, and longer-term worries about whether the infused cells could, years later, cause secondary cancers or other problems.

Oncologists have learned how to treat the acute reactions, and so far, no long-term problems have been detected, but not enough time has passed to rule them out.

Patients who receive the treatment will be entered in a registry and tracked for 15 years.

Treatments involving live cells, known as “biologics” are generally far more difficult to manufacture than standard drugs, and the panelists also expressed concerns about whether Novartis would be able to produce consistent treatments and maintain quality control as it scaled up its operation.

Another parent at the meeting, Don McMahon, described his son Connor’s grueling 12 years with severe and relapsing leukemia, which started when he was 3. Mr. McMahon displayed painful photographs of Connor, bald and intubated during treatment. And he added that chemotherapy had left his son infertile.

A year ago, the family was preparing for a bone marrow transplant when they learned about the cell treatment, which Connor then underwent at Duke University. He has since returned to playing hockey. Compared with standard treatment, which required dozens of spinal taps and painful bone marrow tests, the T-cell treatment was far easier to tolerate, Mr. McMahon said, and he urged the panel to vote for approval.

A third parent, Amy Kappen, also recommended approval, even though her daughter, Sophia, 5, had died despite receiving the cell treatment. But it did relieve her symptoms and give her a few extra months. Sophia’s disease was far advanced, and Ms. Kappen thought that if the treatment could have been given sooner, Sophia might have survived.

“We hope that more families have a longer time with their children fighting this evil disease, and our children deserve this chance,” she said.

The treatment was developed by researchers at the University of Pennsylvania and licensed to Novartis.

Use will not be widespread at first because the disease is not common. It affects only 5,000 people a year, about 60 percent of them children and young adults. Most children are cured with standard treatments, but in 15 percent of cases — like Emily’s and Connor’s — the disease does not respond, or it relapses.

Analysts predict that these individualized treatments could cost more than $300,000, but a spokeswoman for Novartis, Julie Masow, declined to specify a price.

Although the figure may seem high, people with cancer often endure years of expensive treatment and repeat hospital stays that can ultimately cost even more.

Because the treatment is complex and patients need expert care to manage the side effects, Novartis will initially limit its use to 30 or 35 medical centers where employees will be trained and approved to administer it, the company said.

As to whether the treatment, known as CTL019 or tisagenlecleucel (pronounced tis-a-gen-LEK-loo-sell), will be available in other countries, Ms. Masow said by email: “Should CTL019 receive approval in the U.S., it will be the decision of the centers whether to receive international patients. We are working on bringing CTL019 to other countries around the world.” She added that the company would file for approvals in the European Union later this year.

By late November 2016, 11 of the 52 patients in the study who went into remission relapsed. Twenty-nine were still in remission. Eleven others had further treatments, like bone marrow transplants. One patient was not available for assessment. Three who had relapses died, and one who did not relapse died from a new treatment given during remission. The median duration of remission is not known because it has not been reached: Some patients were still well when last checked.

Researchers are still debating about which patients can safely forgo further treatment, and which might need a bone marrow treatment to give the best chance of a cure.

The treatment requires removing millions of a patient’s T-cells — a type of white blood cell often called soldiers of the immune system — and genetically engineering them to kill cancer cells. The technique employs a disabled form of H.I.V., the virus that causes AIDS, to carry new genetic material into the T-cells to reprogram them. The process turbocharges the T-cells to attack B-cells, a normal part of the immune system that turn malignant in leukemia. The T-cells home in on a protein called CD-19 that is found on the surface of most B-cells.

The altered T-cells are then dripped back into the patient’s veins, where they multiply and start fighting the cancer.

Dr. Carl H. June, a leader of the University of Pennsylvania team that developed the treatment, calls the turbocharged cells “serial killers.” A single one can destroy up to 100,000 cancer cells.

Because the treatment destroys not only leukemic B-cells but also healthy ones, which help fight germs, patients need treatment to protect them from infection. So every few months they receive infusions of immune globulins.

In studies, the process of re-engineering T-cells for treatment sometimes took four months, and some patients were so sick that they died before their cells came back. At the meeting, Novartis said the turnaround time was now down to 22 days. The company also described bar-coding and other procedures used to keep from mixing up samples once the treatment is conducted on a bigger scale.

Michael Werner, a lawyer and expert on gene and cell technologies and regulation, and a partner at Holland and Knight in Washington, said that results so far proved that T-cell treatment works.

“The fact that it can be done means more people will go into the field and more companies will start developing these products.” He added, “I think we’re in for really exciting times.”

A correction was made on 
July 20, 2017

An article last Thursday about a gene-altering leukemia treatment referred incorrectly to the availability of gene therapy. If the Food and Drug Administration approves the leukemia treatment, it will be the first gene therapy approved in the United States, but not the first anywhere; other forms of gene therapy have already been approved and marketed in Europe and China.

How we handle corrections

Katie Thomas contributed reporting.

A version of this article appears in print on  , Section A, Page 1 of the New York edition with the headline: F.D.A. Panel Urges New ‘Living Drug’ To Fight Cancer. Order Reprints | Today’s Paper | Subscribe

Advertisement

SKIP ADVERTISEMENT