Identifying Essential Competencies of Software Engineers

Richard T. Turley
Colorado Memory Systems Inc.
800 S. Taft Ave.
Loveland, CO 80537

RICKTURL.COMEMSYSQCMS.gr.hp.com

Abstract

The knowledge and skills of software engineers are perhaps
the most important factors in determining the success of
software development. Thus, we seek to identify the pro-
fessional competencies that are most essential. In the first
phase of our research, we use the Critical Incident Interview
technique to identify essential competencies. The Critical
Incident Interview technique is a rigorous method for deter-
mining critical job requirements from structured interviews
with workers. We use this technique in an in-depth review
of 20 professional software engineers employed by a major
computer firm. Our review includes an evaluation of bio-
graphical and Critical Incidence Interview data for 10 ex-
ceptional and 10 non-exceptional subjects. We also analyze
competencies identified by software managers. We identify
38 essential competencies of software engineers. Differences
between exceptional and non-exceptional subjects were not
expected in this first phase of our research. We studied ex-
ceptional and non-exceptional engineers to ensure that all
competencies are uncovered.

Subject areas: software engineering, large software
development, software teams, knowledge and skills
of software engineers, software productivity, soft-
ware psychology

1 Introduction

Much effort has been placed in the development of engineer-
ing approaches to software development such as software
tools, coding practices, and test technology. But the over-
whelming determiner of software productivity and quality is
still personnel and team capability. Boehm found personnel
and team capability to be twice as important as the next

*J. Bieman'’s research is partially supported by the NASA Lang-
ley Research Center, Colorado Advanced Software Institute (CASI),
Computer Technology Associates (CTA) and Storage Technology Inc.
CASI is sponsored in part by the Colorado Advanced Technology In-
stitute (CATI), an agency of the state of Colorado. CATI promotes
advanced technology teaching and research at universities in Colorado
for the purpose of economic development.

James M. Bieman*
Department of Computer Science
Colorado State University
Fort Collins, CO 80523
bieman@cs.colostate.edu

most important productivity factor [Boe81]. By studying
exceptional programmers, the individual capabilities that
most influence performance can be identified [Cur81].

Boehm also cites a 25-to-1 ratio between the most produc-
tive and least productive software developers and a 10-to-1
difference in their error rates [Boe88]. Brooks suggests the
“use of great designers” as one of five promising approaches
to improve software development productivity [Bro87]. One
of Boehm’s seven basic principles of software engineering is
to use “better and fewer people” [Boe83].

Our aim is to determine the attributes that are necessary
for exceptional performance, so that the performance of all
software engineers can be improved. We report the results
from the first phase of a two phase study designed to de-
termine the essential competencies of professional software
engineers. In Phase 1 we identify these competencies via
the Critical Incident Interview technique. In Phase 2 (to
be discussed in a later paper), we perform a quantitative
study to differentially relate these competencies to engineer
performance.

This study is based on the premise that exceptional soft-
ware engineers exhibit different skills which they apply to
the problems of software engineering. These unique skills
can be identified by careful study of experienced software
engineers.

Our overall goal is to identify the skills, techniques, and
attributes that are used by skilled programmers, but not
used by less skilled programmers. In this paper, we re-
port the results of our efforts to identify critical professional
competencies through in-depth interviews of a small sam-
ple of exceptional and non-exceptional software engineers.
We evaluate the subjects with a Biographical Questionnaire,
and we conduct Critical Incident Interviews of the subjects.
In a follow-up study, we will use the identified competen-
cies, larger samples, and objective survey instruments to
identify significant differences between exceptional and non-
exceptional software engineers.

2 Subjects

Subjects are drawn from five commercial research and de-
velopment laboratories at three different sites. The subjects
develop applications in test and measurement, embedded
firmware, and computer aided design.

We use two matched subject pools with 10 subjects in each
of the exceptional and non-exceptional pools. The subjects
are matched by time in current organization. Thus, if an

|| Population Summary | Total ||
#Engineers 252
#SW Engineers 150
#Study Participants 20
of Exceptional SW Engineers Studied 10

[% of Total SW Engineers Deemed Exceptional | 6.7%

Table 1: Population Summary

exceptional engineer with four years in the current organi-
zation is identified, a second non-exceptional engineer with
four years experience in the same organization is added to
the study. This approach controls for the effect of the or-
ganization on the individual’s performance. The study does
not attempt to control any other factors, since all are pos-
sible contributors to exceptional performance.

All subjects are professional software development engi-
neers from a major US corporation (referred to as The Com-
panyfor proprietary reasons) with a minimum of two years of
experience in developing software. Fach subject has success-
fully completed a project released to the end user. Table 1
summarizes the population from which the study partici-
pants are drawn. The #FEngineers represents the number
of engineers of all disciplines in the total population, while
the #£SW Engineers represents the number of software en-
gineers in the total. The #Study Participantsindicates the
number of engineers that were selected for the study. The
% of Total SW Engineers Deemed Fzceptionalis the ratio
of the number of exceptional software engineers studied to
the total number of software engineers in the population.
The population represents a sample of organizational units
in The Company.

Subjects are selected by a process in which managers iden-
tify the top performers in their organization. Managers were
asked to identify an exceptional (top 5% of the organiza-
tion) and average performing pair of individuals. The pair
should have spent the same amount of time in the orga-
nization. As a result of this process, manager bias is an
inherent part of the research design. Exceptional software
engineers are those identified as exceptional by managers.
Vessey also used manager assessment as a method (the “ex
ante” method) for identifying experts [Ves85].

Conducting Critical Incident Interviews is quite labor in-
tensive. As a result, the sample size is fairly small. With
this sample we are able to perform an evaluation giving us a
rich set of qualitative information. These initial results can
be validated through further studies of larger samples using
closed end survey instruments.

A biographical questionnaire is used to evaluate the sub-
ject pool. The questionnaire validates that subjects repre-
sent experienced rather than naive programmers, and that
subjects include a valid cross-section of developers covering
different language use, target applications, and development
environments. The questionnaire requests information con-
cerning education, on the job training, experience, languages
used, and methods employed. We find that:

o 75% of the subjects are male; 25% are female. The
3 to 1 ratio is consistent with published reports that

(n=20)

Years at Company Mean Std | Range
in Software Dev

Exceptional 9.05 3.59 4-15
Non-Exceptional 5.00 1.75 2-7.5

Table 2: Years at Company in Software — Differential

women constitute only 30% of the employed computer
scientists [PPR*90].

e The mean age of the subjects is 33.45 years.

e The mean number of degrees held is 1.6. 65% of the
subject hold a Bachelors degree as the highest degree,
30% hold a Masters degree, and one subject (5%) has
a Ph.D.

e The mean number of training hours completed per sub-
ject in the two years preceding the study is 117.70 hours.
The subjects reported a wide range of training hours.

e Subject responses to the question of “describe the soft-
ware engineering methods and tools that you use now
or in the past in your job” varied too greatly to be very
useful.

e Subjects had worked in The Company a mean of 7 years
in software engineering, ranging from 2 to 15 years.

The biographical data were analyzed for statistical signifi-
cance at the .05 level when studied on a differential basis.
That is, the data were split between Fzceptional and Non-
FExceptionalsubjects and compared. The Fisher’s Fxact Test
is used to compare nominal variables with only two values
(e.g. gender). The ¢-test is used to compare the means of
ordinal values (e.g. training hours).

Since this was such a small sample, we did not expect
any significant differences between the Ezceptionaland Non-
FEzceptionalgroups. However, Years at Company in Software
are significantly related to Fzceptional Performance with
the 2-tail ¢-test calculated value of -3.21 with a significance
level of .007. This significance demonstrates that although
subjects were matched for total experience in the current
organization, they were not matched for Years at Company
in Software. Table 2 shows the differential information con-
cerning years in The Company in software.

The demographic analysis indicates that, with the ex-
ception of the experience variable, no demographic data
were significantly different between the exceptional and non-
exceptional sub-samples in this small sample of 20 subjects.
The lack of other statistically significant differences indicates
experimental control of the other variables or speaks to the
uniformity of the sample.

3 Critical Incident Interviews

The Critical Incident Technique attempts to discover the
critical job requirements that have been demonstrated to
make a difference between success and failure. The tech-
nique is based on two fundamental principles:

1. Reporting of facts regarding behavior is preferable to
the collection of interpretations, ratings, and opinions
based on general impression.

2. Reporting should be limited to those behaviors that,
according to competent observers, make a significant
contribution to the activity.

Flanagan provides an overview of the Critical Incident
Technique for data collection [Fla54]. The technique was
introduced during World War IT in the Aviation Psychology
Program to study combat leadership and pilot disorienta-
tion. The technique has since been refined and applied to
measures of performance, measures of proficiency, training,
selection, job design, equipment design, and leadership.

Protocol Analysisis used to translate the verbatim copy
of an interview to a generalized set of cross-transcript re-
sults [ES84]. A formal process provides a record of the anal-
ysis and allows identified relations to be tied to specific ut-
terances in the original transcripts [Web85, McC88]. The
process is a movement from the specific to the general.

The process moves from transcripts to results in the fol-
lowing stages. Stage 1 converts an utterance to an observa-
tion by recognizing it as significant. A sentence or phrase is
not included in the analysis until it is identified as being rel-
evant to the research. The transcript is read carefully with
the research question in mind to identify those utterances
that must be identified and collected for later study.

Stage 2 develops the logical relationships that occur in
the transcript. These relationships can be with the utter-
ance itself, with the rest of the transcript or with previous
literature. Stage 2 begins to attach meaning to and classify
the utterance.

Stage 3 refines the observation in relation to all of the
other Stage 2 observations in all of the transcripts. This
stage moves from the study of one transcript to form rela-
tionships across transcripts.

In Stage 4, the researcher looks for patterns of inter-theme
consistency and contradiction. Redundant themes are com-
bined or eliminated. Themes that do not appear useful for
the research question are eliminated.

Stage 5 identifies the patterns across the themes derived
from the entire interview process.

3.1 Interview Process

Each Critical Incident Interview was conducted in a private
room at the subject’s work site. Each interview was tape-
recorded, and the recordings were transcribed for later use.
The interviews began with casual conversation followed by a
description of the scope of the research and the general flow
of the interview. The interview followed the basic structure
and practices defined in [Hew89].

A typical interview began with an introduction similar to
the following one taken from the transcript of one of the
interviews:

What 1'd like you to do is start off by thinking about
a time which represents for you perhaps your per-
sonal best assoctated with software engineering in
whatever form, so be it software development, soft-
ware maintenance, testing, whatever it s, but a

time at which you feel you were at your personal
best, and when you've got one of those situations
i mind, give me kind of a broad overview, a fifty
word summary overview which is, how did you get
tnvolved in the situation, who were the other play-
ers, what was the nature of the task, and then we’ll
come back and we’ll walk through it step by step in
gory detail to find out exactly what you did in each
case of that task.

The subject would then describe an incident and the inter-
viewer would probe for clarification or increased depth of re-
sponse. The interviewer used probes, open-ended questions,
questions of clarification, and reflective listening to keep the
participant on the subjects of interest. The only way that
the interviewer tried to direct the conversation was to pro-
vide additional clarification or to move on to other topics.
The subject generally described two to three significant
incidents in the course of one interview. When each incident
was completed, the subject was asked to describe the critical
skill or competencies which were essential to the successful
completion of the task. At the end of the discussion of the
subject’s incidents, the subject was asked to describe the list
of essential competencies for an exceptional software engi-
neer. The incidents formed one set of data regarding com-
petencies, the self-description of skills formed a second set,
and the manager generated competencies formed a third.

3.2 Interview Transcript Analysis

Data analysis of the Critical Incident Interviews used the
Protocol Analysis technique of McCracken [McC88]. Each
written transcript was reviewed and highlighted to iden-
tify tasks, incidents, competencies, self-described skills, and
identified competencies for exceptional performance. Each
transcript was reviewed individually to identify consistent
themes which could be generalized as competencies for that
individual. After each transcript was reviewed individually,
the set of transcripts was examined to identify competencies
which appear across multiple transcripts. These competen-
cies were generalized and reworded as required to emphasize
the similarities. Great care was taken not to over-generalize
or distort the original meanings. A set of behaviors was
identified based upon all of the the transcripts and served
as a detailed explanation of the intent of the competency.
At this point, original transcript text was retained and at-
tached to the competency as further definition. A final pass
allowed the combination of related competencies into a sin-
gle competency.

All of the analysis to this point was done blindly. The
transcripts were tagged with an identification number and
the analyst did not know the name of the subject. Further,
the analyst did not know if the transcripts were from an
exceptional or non-exceptional subject.

The next step of the process was to count the number of
subjects exhibiting an identified competency from each of
the exceptional and non-exceptional groups. Those compe-
tencies exhibited by few subjects were dropped from further
consideration. In general, at least three subjects had to
identify a competency before it was retained. However, if
one exceptional and one non-exceptional subject identified
a competency, it was also retained.

The competencies identified from a subject’s self-assess-
ment of skills and from the subject’s opinion of which com-
petencies are related to exceptional performance were also
identified and categorized. Those that appeared most often
across transcripts were retained.

Finally, each manager who had provided subjects was
asked to identify the competencies used in selecting the ex-
ceptional subjects for study. The manager was asked to list
the skills, knowledge, or attributes that differentiated ex-
ceptional performers from non-exceptional performers in the
study. The competencies identified most frequently across
the five participating managers were retained.

4 Identified Competencies

Competencies are the skills, techniques, and attributes of
job performance. Our analysis was directed towards identi-
fying critical competencies of software engineers from three
sources: subjects describing their own behavior, subjects
reporting the competencies they think are related to excep-
tional performance, and managers describing the competen-
cies of the subjects they selected as exceptional. The com-
petencies from the three sources were merged into a single
list of 38 competencies.

The 20 Critical Incident Interviews yielded a massive
amount of data. Fach interview lasted an average of two
hours. Hence, the full set of data consists of 40 hours of
taped interviews. The transcription of these tapes produced
over 200,000 words for just the subject responses.

4.1 Derived Competencies

A total of 27 competencies were derived from the analysis
of the subjects description of their own role in specific in-
cidents. These competencies are identified by marking the
skills, knowledge, or personal attributes alluded to while de-
scribing their own role in the incidents.

4.2 Self-Described Competencies

Subjects were asked to name the skills, knowledge, or per-
sonal attributes most important in helping them achieve
their success in the described incident. The subjects were
prompted for this response by a very open-ended question.
Hence the replies are presumed to be the competencies con-
sidered most significant by the study participants.

Each subject enumerated those competencies that they
felt most contributed to their own success. All summary lists
for each of the 20 subjects were combined into a single list of
competencies. Related competencies were merged to form
a single competency. The number of subjects, both excep-
tional and non-exceptional, expressing the competency was
noted. The competencies mentioned most frequently were
retained for future analysis. Many of the competencies cited
by engineers as being important to their own success, are,
in fact, the same competencies identified from the analysis
of the transcripts.

4.3 Manager Described Competencies

A third set of competencies was created by asking the man-
agers of the subjects:

What Knowledge, Skills, or Attributes differenti-
ate your exceptional performers from your non-
exceptional performers?

These are the same managers who classified the subjects in
their organization as exceptional or non-exceptional. Six-
teen differential competencies were identified by the five
managers in the study. There was no further discussion with
these managers to provide further elaboration on these com-
petencies. Many of these competencies are similar to those
identified by the analysis of transcripts or cited by engineers
as those leading to exceptional performance.

4.4 Summary of Competencies

Table 3 summarizes the competencies identified most fre-
quently from the multiple sources. The Derived category
refers to those competencies extracted from the analysis of
the interview transcripts. They represent those areas which
the subject chose to discuss during their narration about
their experiences. The number in this column records the
number of subjects that described behaviors related to this
competency. The Self-Described column records the num-
ber of subjects that offered the listed competencies when
were asked to describe the skills; knowledge, and attributes
associated with their successful performance on projects.
The Manager records how many of the five managers cited
the listed competencies as those that differentiate between
exceptional and non-exceptional performers in their organi-
zation.

The competencies derived from the protocol analysis are
considered to be more important than the competencies of-
fered directly by the engineers or managers. This is because
this study is based on the notion that behaviors associated
with high performance are the unit of study. We consider
competencies that are validated by multiple sources to be
more important than competencies that come from only
one source. A number of competencies were identified by
the subjects and/or managers, but were not included in the
set of competencies that will be used for further research.
Some of these rejected competencies overlapped with those
in Table 3. However, most were rejected because few peo-
ple identified the competency, or it was not validated by
multiple sources.

The identified competencies draw a broad picture of the
necessary skills of a software engineer. The competencies
can be organized into four categories, Task Accomplishment,
Personal Attributes, Situational Skills, and Interpersonal
Skills. The categories, and the behavior and/or attitudes of
engineers that exhibit each competency are briefly described
as follows:

1. Task Accomplishment Competencies:

(a) Leverages/Reuses Code: pro-actively attempts to
leverage other engineers’ efforts by using their
code or designs and attempts to leverage own ef-
fort by making newly developed code reusable.

Self-

Competency Derived Described Manager

1. Team Oriented 14 12 2
2. Seeks Help 11 4

3. Helps Others 2 1 1
4. Use of Prototypes 14 3

5. Writes/Automates Tests with Code 13

6. Knowledge 13 12

7. Obtains Necessary Training/Learning 12 7

8. Leverages/Reuses Code 10

9. Communication/ Uses Structured 8 8

Techniques for Communication

10. Methodical Problem Solving 9

11. Use of New Methods or Tools 5

12. Schedules and Estimates Well 4 2 1
13. Uses Code Reading 4

14. Design Style 16

15. Focus on User or Customer Needs 11 1

16. Response to Schedule Pressure 9

17. Emphasizes Elegant and Simple Solutions 8 2

18. Pride in Quality and Productivity 12 1

19. Pro-active/Initiator/Driver 11

20. Pro-active Role with Management 10

21. Driven by Desire to Contribute 8 5

22. Sense of Fun 7

23. Sense of Mission 6

24. Lack of Ego 4

25. Strength of Convictions 3 4

26. Mixes Personal and Work Goals 3

27. Willingness to Confront Others 3

28. Thoroughness 4

29. Skills/ Techniques 11

30. Thinking 9

31. Desire to Do/Bias for Action 5 1
32. Attention to Detail 4

33. Perseverance 13

34. Innovation 4

35. Experience 3

36. Desire to Improve Things 3

37. Quality 2

38. Maintaining a “big picture” view/ 1 3

Breadth of View & Influence

Table 3: Essential Competencies

(b)

Methodical Problem Solving: uses a methodical
approach (builds mental models, designs experi-
ments, develops test tools, etc) in understanding
and solving problems.

Skills/ Techniques: proficient in using design tech-
niques, debugging skills; easily makes technology
choices; good technical and software development
background.

Writes/Automates Tests with Code: applies in-
cremental testing techniques during code devel-
opment so that a given module achieves a high
degree of reliability by the time it is completed.

Experience: experience with a similar project.

Obtains Necessary Training/Learning: actively
seeks the necessary training required to complete
the assigned task.

Uses Code Reading: uses code reading and other
group development techniques to ensure final code
quality.

Use of New Methods or Tools: seeks to improve
performance or results through the use of new
tools or methods.

Schedules and Estimates Well: strong concern for
schedules and estimates schedules well.

Use of Prototypes: uses a prototyping method to
assess key system parameters before designing the
final product, and avoids using prototype as final
implementation.

Knowledge: at the time of assignment, possesses
the unique skills or knowledge required to accom-
plish the task at hand.

Communication/ Uses Structured Techniques for
Communication: takes advantage of the tools and
techniques of structured design in order to under-
stand and communicate designs, but does not fol-
low the complete formalism of the approach.

2. Personal Attributes Competencies:

(a)

(b)

Driven by Desire to Contribute: values the sense
of accomplishment which comes from making a
direct contribution.

Pride in Quality and Productivity: takes pride
in producing defect free products on schedule in
minimum time.

Sense of Fun: enjoys the challenge of the assign-
ment and the sense of accomplishment from com-
pleting it — has fun at work.

Lack of Ego: stresses the solution over the source
of the solution; does not care where a good idea
comes from and does not feel the need to promote
their own ideas.

Perseverance: discipline, stubbornness, compul-
siveness, dedication, and willingness to work hard
on a task.

Desire to Improve Things: not being satisfied with
the status quo, setting high personal expectations
and goals, and allowing time for improvement.

(8)

(n)

Pro-active/Initiator/Driver: takes the initiative
to complete important tasks. Influences others to
consider alternative approaches.

Maintaining “big picture” view/Breadth of View
& Influence: sees the overall situation rather than
focusing on details.

Desire to Do/Bias for Action: sense of urgency, re-
sults oriented, and a willingness to try something.

Thoroughness: makes sure all paths are covered
— methodical, organized, and overcautious.

Sense of Mission: driven by a sense of mission
and clearly articulates goals to achieve a specific
result.

Strength of Convictions: exhibits and articulates
strong beliefs and convictions. Acts in accordance
with these beliefs, even when they are counter to
specific managment direction.

Mixes Personal and Work Goals: subjects find
ways to align their project goals with their own
personal development goals, and lobby their man-
agers to receive the work assignments that match
their personal desires.

Pro-active Role with Management: pro-actively
attempts to affect project direction by influencing
management.

3. Situational Skills Competencies:

(a)

(h)

Quality: a concern for reliability and a commit-
ment to high quality.

Focus on User or Customer Needs: considers cus-
tomer or user input and feedback to be an essential
ingredient in the design of products.

Thinking: the ability to think algorithmically and
structuredly.

Emphasizes Elegant and Simple Solutions: creates
solutions which are elegant and simple and allow
for easy extension to furture needs.

) Innovation: having creative ideas.

) Attention to Detail: ability to deal with complex-

1ty.

Design Style: use of design techniques relying
on visual representation of designs; creates struc-
tured designs, usually without using formal tech-
niques.

Response to Schedule Pressure: in response to
schedule pressure, sacrifices important parts of the
design process.

4. Interpersonal Skills Competencies

(a)

(b)

Seeks Help: pro-actively seeks the assistance of
others in learning, researching, designing, under-
standing, debugging, or checking results.

Helps Others: spends a significant amount of time
assisting others in the completion of their tasks or
influencing broad organizational direction.

(¢) Team Oriented: values synergy of group efforts
and invests the effort required to create group so-
lutions even at the expense of individual results.

(d) Willingness to Confront Others: subjects will not
let a conflict simmer and will openly confront an-
other person in order to resolve a problem.

The competencies were analyzed on a differential basis
using Fisher’s Exact Test with a 2-tail probability. The
score used for this test was the number of subjects that de-
scribed behavior exhibiting a particular competencies. Only
one of the competencies exhibited significant differences be-
tween exceptional and non-exceptional subjects. There was
a significant differences between the groups with a 2-tail
computed significance level of 0.0108 for the Use of Pro-
totypes competency. We find that exceptional subjects are
more likely to use prototypes to assess key system param-
eters. This result is especially noteworthy given the small
sample size. None of the remaining competencies exhib-
ited significance at the 0.05 level or better. Although most
of the competencies cannot be used to distinguish between
the exceptional and non-exceptional subjects, the derived
competencies offer a unique view of the necessary skills of
professional software engineers.

5 Related Work

Approaches for behavior-oriented software engineering re-
search generally lie along a continuum between tightly con-
trolled experiments (often with limited generality) and more
broadly defined studies which stress qualitative psychologi-
cal techniques [Shn80, Mor81, BSH86, Cur80, Cur87].

The bulk of the research to date favors the tightly con-
trolled experimental approach. Studies seeking to correlate
easily measured a priori factors with programmer perfor-
mance have shown mixed results. In a study conducted by
Evans and Simkins [ES89], 34 easily measured demographic,
academic, experience, and behavioral variables could ac-
count for no more than 23% of the variation in student
performance. On the other hand, Chrysler was able to
explain over 85% of the variance in performance based on
only thirteen program variables and five programmer vari-
ables [Chr78]. The subjects in Chrysler’s study were expe-
rienced professional programmers rather than students. In
another similar study, Moher and Schneider were able to ex-
plain 45-55% of the performance variability in student pro-
grammers, but for professional programmers only the years
of experience was significant [MS81].

Our results on a small sample of professional program-
mers also found that the number of years of experience is
the only statistically significant biographical factor. Rather
than search for other simple predictors of performance, our
major emphasis is on studying the actual behavior of soft-
ware engineers when solving software engineering problems.

In behavioral experiments conducted at MCC, three expe-
rienced software developers were videotaped during the pro-
cess of developing a design solution [GC87, GCKS87]. The
observed development process was not linear — designers
operated simultaneously at various levels of abstraction and
detail. Also, each designer exhibited a markedly different

approach to design. Guindon describes the nonlinear design
process as serendipitous or opportunistic [Gui88].

Of particular interest in the MCC studies is the use of an
observational technique for gathering information. By ob-
serving the video tapes the researchers were able to obtain
thinking aloud reports, and by collecting notes used in the
designs were able to reconstruct the actual design sequence.
The researchers also used protocol analysisto uncover cogni-
tive factors at work in design. The major drawback to this
study is its limited sample size.

Rather than directly observing behavior, our study anal-
yses in-depth interviews of subjects describing their behav-
ior. Although the incident interviews and transcript analysis
used in our study require significant effort, they are far less
labor intensive than the observational approach used in the
MCC studies. As a result, we are able to examine a larger
sample size than done at MCC.

6 Conclusions

We use the Critical Incident Interview technique in an in-
depth review of 20 professional software engineers employed
by a major computer firm. Our review includes an evalu-
ation of biographical and Critical Incidence Interview data
for 10 exceptional and 10 non-exceptional subjects. Our
data shows that one biographical factor, Years at Company
in Software, 1s significantly related to exceptional perfor-
mance. We also analyze competencies identified by software
managers. By combining the data obtained through the
interviews and by the managers, we identify 38 essential
competencies of software engineers. These competencies are
shown in Table 3

The identified competencies provide an alternative view
of the job of software engineering. Rather than an antisep-
tic application of formal software methods, we find a broad
mix of knowledge, personality, and attitude involved. In ad-
dition to the expected skill competencies (Use of Prototypes,
Automates Tests, Reuses Code, Uses Code Reading, ...) we
find personality (Sense of Fun, Lack of Ego, Willingness to
Confront Others, Perseverance, ...) and attitude (Pride in
Quality, Strength of Conwvictions, Bias for Action, Desire
to Improve Things, ...) emerge as significant factors in the
engineering process.

The identification of competencies of software engineers
is an important result, even if they are only threshold com-
petencies. Threshold competencies are those competencies
that are important to the job, and are exhibited equally by
exceptional and non-exceptional performers.

The behavior of software engineers is of critical impor-
tance to the software engineering process. New methods
to obtain such behavior data are important. Our results
demonstrate the effectiveness of the Critical Incident Inter-
view technique for collecting software engineering process
data.

Our results can be strengthened by expanding the study
to include engineers from more than one company. Corpo-
rate cultures can vary widely, and the definition of “good
software engineering” differs between companies. Thus, the
essential competencies are likely to be somewhat different in
other companies.

Acknowledgement

We thank Charles Neidt, Kurt Olender, Jacek Walicki, and
especially Gerry Johnson for their insight and guidance on
this research. We thank James Turley for his significant
contribution to the statistical analysis of the project data.
We also thank the anonymous US corporation (referred to
as The Company) for allowing us access to their software
engineers for this study.

References

[Boes1]

[Boes3]

[Boess]

[Bro&7]

[BSHS6]

[Chr78]

[Cur80]

[Cur81]

[Cur87]

[ES84]

[ES89]

[Fla54]

[GC8T]

B. Boehm. Software Engineering Economics.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

B. Boehm. Seven basic principles of software en-
gineering. The Journal of Systems and Software,
3(1):3-24, January 1983.

B. Boehm. Understanding and controlling soft-
ware costs. TEFEFE Trans. Software Engineering,
14(10):1462-1477, October 1988.

F. Brooks, Jr. No silver bullet: Essence and ac-
cidents of software engineering. /EFFE Computer,
20(4):10-19, April 1987.

V. Basils, R. Selby, and D. Hutchens. Ex-
perimentation in software engineering. [FEF
Trans. Software Engineering, SE-12(7):733-743,
July 1986.

E. Chrysler. Some basic determinants of com-
puter programming productivity. Communica-
tions of the ACM, 21(6):472-483, June 1978.

B. Curtis. Measurement and experimentation
in software engineering. Proc. of the IEEFE,
68(9):1144-1157, September 1980.

B. Curtis. Substantiating programmer variablil-
ity. Proc. of the IEEE, 69(7):846, July 1981.

B. Curtis. Five paradigms in the psychology
of programming. Technical Report STP-132-87,
MCC, Austin, TX, April 1987.

K.A. Ericsson and H.A. Simon. Protocol Analy-
sts: Verbal Reports as Data. MIT Press, Cam-
bridge, MA, 1984.

G.E. Evans and M.G. Simkin. What best pre-
dicts computer proficiency? Communications of
the ACM, 32(11):1322-1327, November 1989.

J. Flanagan. The critical incident technique.
Psychological Bulletin, 51(4):327-358, July 1954.

R. Guindon and B. Curtis. Control of cognitive
processes during software design: What tools
would support software designers? Technical
Report STP-296-87, MCC, Austin, TX, August
1987.

[GCK87]

[Gui88]

[Hew89]

[McC83]

[Mor81]

[MS81]

[PPRY90]

[Shn80]

[Ves85]

[Web85]

R. Guindon, B. Curtis, and H. Krasner. A model
of cognitive processes in software design: An
analysis of breakdown in early design activities
by individuals. Technical Report STP-283-87,
MCC, Austin, TX, August 1987.

R. Guindon. A framework for building soft-
ware development environments: System design
as ill-structured problems and as an opportunis-
tic process. Technical Report STP-298-88 MCC,
Austin, TX, September 1988.

Hewlett-Packard Company, Corporate Training
and Development. The Horizon Project, October
1989.

G. McCracken. The Long Interview, Sage Uni-
versity Paper Series on Quantitative Applica-
tions in the Social Sciences, Vol 13. Sage Publi-
cations, Newbury Park, CA, 1988.

T.P. Moran. An applied psychology of the user.
ACM Computing Surveys, 13(1):1-11, March
1981.

T. Moher and G.M. Schneider. Methods for im-
proving controlled experimentation in software
engineering. Proc. 5th Int. Conf. Software Fngi-
neering, 1981.

A. Pearl, M. Pollack, E. Riskin, B. Thomas,
E. Wolf, and A. Wu. Becoming a computer scien-
tist. Communications of the ACM, 33(11):47-57,
November 1990.

B. Shneiderman. Software Psychology: Human
Factors in Computer and Information Systems.

Winthrop Publishers, Cambridge, MA, 1980.

1. Vessey. Expertise in debugging computer pro-
grams: A process analysis. Int. J. Man-Machine
Studies, 23:459-494, 1985.

R. Weber. Basic Content Analysis, Sage Univer-
sity Paper Series on Quantitative Applications
in the Social Sciences, Vol 49. Sage Publications,

Newbury Park, CA, 1985.

