Skip to main content

Advertisement

Log in

Redox properties of humic substances under different environmental conditions

  • Environmental functions of biochar
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Humic substances (HS) are one of the most important parts of dissolved organic matter which are ubiquitous in environments playing an important role in many (bio)geochemical processes. In order to define the effects of environmental conditions on the biological transformation of compounds in the presence of HS, microbial reduction rates of ferrihydrite under different HS concentrations, environmental temperature, and pH values were determined. The results showed that increasing the concentration of standard humic substances (Pahokee peat standard humic acids (PPHA) or Pahokee peat standard fulvic acids (PPFA)) purchased from the International Humic Substances Society could compensate for the certain gap of reduction rates between low temperature (10 °C) and high temperature (35 °C). Furthermore, PPHA showed a greater stimulation of Fe(III) reduction than PPFA in common groundwater temperature (10–25 °C). The reduction rates decreased significantly when pH values were greater than 7.7 with total organic carbon (TOC) contents above 5 mg C/L, and protein-like fluorophore was detected here. When pH values were lower than 7.7, the PPHA fluorescence characteristic primarily showed humic-like fluorophore composed of quinone-like fluorophore, which corresponds to a high microbial reduction rate. The finding of this study is that fluorophore characteristics of HS linked to the microbial reduction rate under different environment conditions are able to provide a potential development for in-suit remediation process prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aeschbacher M, Sander M, Schwarzenbach RP (2010) Novel electrochemical approach to assess the redox properties of humic substances. Environ Sci Technol 44:87–93

    Article  CAS  Google Scholar 

  • Aeschbacher M, Vergari D, Schwarzenbach RP, Sander M (2011) Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids. Environ Sci Technol 45:8385–8394

    Article  CAS  Google Scholar 

  • Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (1985) Humic substances in soil, sediment and water: geochemistry, isolation and characterization. Wiley, New York

    Google Scholar 

  • Beliaev AS, Saffarini DA, Mclaughlin JL, Hunnicutt D (2001) MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol Microbiol 39(3):722–730

    Article  CAS  Google Scholar 

  • Benedetti MF, Riemsdijk WHV, Koopal LK, Kinniburgh DG, Gooddy DC, Milne CJ (1996) Metal ion binding by natural organic matter: from the model to the field. Geochim Et Cosmochimica Ac 60(14):2503–2513

    Article  CAS  Google Scholar 

  • Cervantes FJ, Bok FAMD, Tuan DD, Stams AJM, Lettinga G, Field JA (2002) Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environ Microbiol 4:51–57

    Article  CAS  Google Scholar 

  • Christensen TH, Kjeldsen P, Albrechtsen H-J, Heron G, Nielsen PH, Bjerg PL, Holm PE (1994) Attenuation of landfill leachate pollutants in aquifers. Crit Rev Environ Sci Technol 24:119–202

    Article  CAS  Google Scholar 

  • Coates JD, Ellis DJ, Blunt-Harris EL, Gaw CV, Roden EE, Lovley DR (1998) Recovery of humic-reducing bacteria from a diversity of environments. Appl Environ Microbiol 64:1504–1509

    CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides, second edn. Wiley, New York

    Book  Google Scholar 

  • Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149

    Article  CAS  Google Scholar 

  • Fellman JB, Hood E, Spencer RGM (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limno Oceanogr 55:2452–2462

    Article  CAS  Google Scholar 

  • Fellman JB, Miller MP, Cory RM, D’Amore DV, White D (2009) Characterizing dissolved organic matter using PARAFAC modeling of fluorescence spectroscopy: a comparison of two models. Environ Sci Technol 43(16):6228–6234

    Article  CAS  Google Scholar 

  • Felix M, Iso C, Ruben K (2010) Reduction and reoxidation of humic acid: influence on spectroscopic properties and proton binding. Environ Sci Technol 44:5787–5792

    Article  CAS  Google Scholar 

  • Ghosh K, Schnitzer M (1980) Fluorescence excitation spectra of humic substances. Can J Soil Sci 60:373–379

    Article  CAS  Google Scholar 

  • Hillel D (1982) Introduction to soil physics. Academic Press

  • Jandl R, Rodeghiero M, Martinez C, Cotrufo MF, Bampa F, Wesemael BV, Harrison RB, Guerrini IA, Richter DD Jr, Rustad L, Lorenz K, Chabbi A, Miglietta F (2014) Current status, uncertainty and future needs in soil organic carbon monitoring. Sci Total Environ 468-469:376–383

    Article  CAS  Google Scholar 

  • Jiang J, Kappler A (2008) Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling. Environ Sci Technol 42:3563–3569

    Article  CAS  Google Scholar 

  • Jones KL, O’Melia CR (2000) Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength. J Membrane Sci 165:31–46

    Article  CAS  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287

    CAS  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    Article  CAS  Google Scholar 

  • Lu YF, Allen HE (2002) Characterization of copper complexation with natural dissolved organic matter (DOM)—link to acidic moieties of DOM and competition by Ca and Mg. Water Res 36:5083–5101

    Article  CAS  Google Scholar 

  • Ludzack FL, Kinkead D (1956) Persistence of oily wastes in polluted water under aerobic conditions. Ind Eng Chem 48:263–267

    Article  CAS  Google Scholar 

  • McKnight DM, Bencala KE, Zellweger GW, Alken GR, Feder GL, Thorn KA (1992) Sorption of dissolved organic carbon by hydrous aluminum and iron oxides occurring at the confluence of Deer creek and the Snake river, Summit County, Colorado. Environ Sci Technol 26:1388–1396

    Article  CAS  Google Scholar 

  • Mills EL, Holeck KT (2001) Oneida Lake: undergoing ecological change. Clear Waters 31:22–25

    Google Scholar 

  • Mladenov N, Huntsman-mapila P, Wolski P, Masamba WRL, McKnight DM (2008) Dissolved organic matter accumulation, reactivity, and redox state in ground water of a recharge wetland. Wetlands 28:747–759

    Article  Google Scholar 

  • Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:319–1321

    Article  Google Scholar 

  • Myers JM, Myers CR (2000) Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J Bacteriol 182:67–75

    Article  CAS  Google Scholar 

  • Ndon UJ, Dague RR (1997) Effects of temperature and hydraulic retention time on anaerobic sequencing batch reactor treatment of low-strength wastewater. Water Res 31:2455–2466

    Article  CAS  Google Scholar 

  • Nurmi JT, Tratnyek PG (2002) Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles. Environ Sci Technol 36:617–624

    Article  CAS  Google Scholar 

  • Piepenbrock A, Schröder C, Kappler A (2014) Electron transfer from humic substances to biogenic and abiogenic Fe(III) oxyhydroxide minerals. Environ Sci Technol 48:1656–1664

    Article  CAS  Google Scholar 

  • Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150:468–493

    Article  CAS  Google Scholar 

  • Roden EE, Kappler A, Bauer I, Jiang J, Paul A, Stoesser R, Konishi H, Xu HF (2010) Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat Geosci 3:417–421

    Article  CAS  Google Scholar 

  • Salmon SU, Malmström ME (2004) Geochemical processes in mill tailings deposits: modelling of groundwater composition. Appl Geochem 19:1–17

    Article  CAS  Google Scholar 

  • Schnitzer M, Riffaldi R (1972) The determination of quinone groups in humic substances. Soil Sci Soc Am J 36:772–777

    Article  Google Scholar 

  • Scott DT, McKnight DM, Blunt-Harris EL, Kolesar SE, Lovley DR (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ Sci Technol 32:2984–2989

    Article  CAS  Google Scholar 

  • Senesi N, D’Orazio V (2005) Fluorescence spectroscopy. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier Press, Oxford, pp 35–52

    Chapter  Google Scholar 

  • Shi L, Chen BW, Wang ZM, Elias DA, Uljana Mayer M, Gorby YA, Ni S, Lower BH, Kennedy DW, Wunschel DS, Mottaz HM, Marshall MJ, Hill EA, Beliaev AS, Zachara JM, Fredrickson JK, Squier TC (2006) Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J Bacteriol 188:4705–4714

    Article  CAS  Google Scholar 

  • Slobodkin AI (2005) Thermophilic microbial metal reduction. Microbiology 74:501–514

    Article  CAS  Google Scholar 

  • Stevenson FJ (1972) Organic matter reactions involving herbicides in soil. J Environ Qual 1:333–343

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions, second edn. Wiley, New York

    Google Scholar 

  • Stookey LL (1970) Ferrozine: a new spectrophotometric reagent for iron. Anal Chem 42:779–781

    Article  CAS  Google Scholar 

  • Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9015

    Article  CAS  Google Scholar 

  • Taylor CA, Stefan HG (2009) Shallow groundwater temperature response to climate change and urbanization. J Hydrol 375:601–612

    Article  CAS  Google Scholar 

  • Wang SY, Yang YX, Yang B (2003) Study on temperature of typical types of wetland soils and its influencing factors in the Sanjiang Plain. Geogr Res 22:389–396

    Google Scholar 

  • Wolf M, Kappler A, Jiang J (2009) Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by geobacter metallireducens. Environ Sci Technol 43(15):5679–5685

    Article  CAS  Google Scholar 

  • Wong JWC, Lai KM, Wan CK, Ma KK, Fang M (2002) Isolation and optimization of PAH-degradative bacteria from contaminated soil for PAHs bioremediation. Water Air Soil Pollut 139:1–13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (21677012) to J.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Jiang.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, W., Yang, Z., Zhang, X. et al. Redox properties of humic substances under different environmental conditions. Environ Sci Pollut Res 25, 25734–25743 (2018). https://doi.org/10.1007/s11356-017-9506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9506-3

Keywords

Navigation