Opponent Color Spaces

- Perception of color is usually not best represented in RGB.
- A better model of HVS is the so-call opponent color model
- Opponent color space has three components:
 - O_1 is luminance component
 - $-O_2$ is the red-green channel

$$O_2 = G - R$$

 $-O_3$ is the blue-yellow channel

$$O_3 = B - Y = B - (R + G)$$

- Comments:
 - People don't perceive redish-greens, or bluish-yellows.
 - As we discussed, O_1 has a bandpass CSF.
 - O_2 and O_3 have low pass CSF's with lower frequency cut-off.

Opponent Channel Contrast Sensitivity Functions (CSF)

• Typical CSF functions looks like the following.

Consequences of Opponent Channel CSF

- Luminance channel is
 - Bandpass function
 - Wide band width \Rightarrow high spatial resolution.
 - Low frequency cut-off \Rightarrow insensitive to average luminance level.
- Chrominance channels are
 - Lowpass function
 - Lower band width \Rightarrow low spatial resolution.
 - Low pass \Rightarrow sensitive to absolute chromaticity (hue and saturation).

Some Practical Consequences of Opponent Color Spaces

- Analog video has less bandwidth in I and Q channels.
- Chrominance components are typically subsampled 2-to-1 in image compression applications.
- Black text on white paper is easy to read. (couples to O_1)
- Yellow text on white paper is difficult to read. (couples to O_3)
- Blue text on black background is difficult to read. (couples to O_3)
- Color variations that do not change O_1 are called "isoluminant".
- Hue refers to angle of color vector in (O_2, O_3) space.
- Saturation refers to magnitude of color vector in (O_2, O_3) space.

Opponent Color Space of Wandell

• First define the LMS color system which is approximately given by

$$\begin{bmatrix} L \\ M \\ S \end{bmatrix} = \begin{bmatrix} 0.2430 & 0.8560 & -0.0440 \\ -0.3910 & 1.1650 & 0.0870 \\ 0.0100 & -0.0080 & 0.5630 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

• The opponent color space transform is then¹

$\begin{bmatrix} O_1 \end{bmatrix}$		1	0	0 -]	$\begin{bmatrix} L \end{bmatrix}$	
O_2	=	-0.59	0.80	-0.12		M	
$\left\lfloor O_3 \right\rfloor$		$\begin{bmatrix} 1 \\ -0.59 \\ -0.34 \end{bmatrix}$	-0.11	0.93		$\left[\begin{array}{c}S\end{array}\right]$	

• We many use these two transforms together with the transform from sRGB to XYZ to compute the following transform.

O_1		0.2814	0.6938	0.0638	$\left\lceil sR \right\rceil$
O_2	=	-0.0971	0.1458	-0.0250	sG
				0.4665	

- Comments:
 - O_1 is luminance component
 - O_2 is referred to as the red-green channel (G-R)
 - $-O_3$ is referred to as the blue-yellow channel (B-Y)
 - Also see the work of Mullen '85² and associated color transforms.³

¹B. A. Wandell, *Foundations of Vision*, Sinauer Associates, Inc., Sunderland MA, 1995.

²K. T. Mullen, "The contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings," *J. Physiol.*, vol. 359, pp. 381-400, 1985.

³B. W. Kolpatzik and C. A. Bouman, "Optimized Error Diffusion for Image Display," *Journal of Electronic Imaging*, vol. 1, no. 3, pp. 277-292, July 1992.

Paradox?

- Why is blue text on yellow paper easy to read??
- Shouldn't this be hard to read since it stimulates the yellowblue color channel?

Better Understanding Opponent Color Spaces

• The XYZ to opponent color transformation is:

$$\begin{bmatrix} O_1 \\ O_2 \\ O_3 \end{bmatrix} = \begin{bmatrix} 0.2430 & 0.8560 & -0.0440 \\ -0.4574 & 0.4279 & 0.0280 \\ -0.0303 & -0.4266 & 0.5290 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
$$= \begin{bmatrix} v_y \\ v_{gr} \\ v_{by} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

- What are v_y , v_{gr} , and v_{by} ?
 - They are row vectors in the XYZ color space.
 - $-v_{gr}$ is a vector point from red to green
 - $-v_{by}$ is a vector point from yellow to blue
 - They are not orthogonal!

Answer to Paradox

• Since v_y , v_{gr} , and v_{by} are not orthogonal

$$\begin{bmatrix} v_y \\ v_{gr} \\ v_{by} \end{bmatrix} \begin{bmatrix} v_y^t v_{gr}^t v_{by}^t \end{bmatrix} \neq \text{identity matrix}$$

• Blue text on yellow background produces and stimulus in the v_{by} space.

$$\begin{bmatrix} O_1 \\ O_2 \\ O_3 \end{bmatrix} = \begin{bmatrix} v_y \\ v_{gr} \\ v_{by} \end{bmatrix} v_{by}^t = \begin{bmatrix} -0.3958 \\ -0.1539 \\ 0.4627 \end{bmatrix}$$

- This stimulus is not isoluminant!
- Blue is much darker than yellow.

Basis Vectors for Opponent Color Spaces

• The transformation from opponent color space to XYZ is:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0.9341 & -1.7013 & 0.1677 \\ 0.9450 & 0.4986 & 0.0522 \\ 0.8157 & 0.3047 & 1.9422 \end{bmatrix} \begin{bmatrix} O_1 \\ O_2 \\ O_3 \end{bmatrix}$$
$$= \begin{bmatrix} c_y \, c_{gr} \, c_{by} \end{bmatrix} \begin{bmatrix} O_1 \\ O_2 \\ O_3 \end{bmatrix}$$

- What are c_y , c_{gr} , and c_{by} ?
 - They are column vectors in XYZ space.
 - c_{gr} is a vector which has no luminance component.
 - $-c_{by}$ is a vector which has no luminance component.
 - They are orthogonal to the vectors v_y , v_{gr} , and v_{by} .

Interpretation of Basis Vectors

• Since c_y , c_{gr} , and c_{by} are orthogonal to v_y , v_{gr} , and v_{by} , we have

$$\begin{bmatrix} v_y \\ v_{gr} \\ v_{by} \end{bmatrix} \begin{bmatrix} c_y c_{gr} c_{by} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Therefore, we have that

$$\begin{bmatrix} O_1 \\ O_2 \\ O_3 \end{bmatrix} = \begin{bmatrix} v_y \\ v_{gr} \\ v_{by} \end{bmatrix} c_{by}$$
$$= \begin{bmatrix} 0.2430 & 0.8560 & -0.0440 \\ -0.4574 & 0.4279 & 0.0280 \\ -0.0303 & -0.4266 & 0.5290 \end{bmatrix} \begin{bmatrix} 0.1677 \\ 0.0522 \\ 1.9422 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

- So, c_{by} is an isoluminant color variation.
- Something like a bright saturated blue on a dark red.

Solution to Paradox

- Why is blue text on yellow paper is easy to read??
- Solution:
 - The blue-yellow combination generates the input v_{by} .
 - This input vector stimulates all three opponent channels because it is not orthogonal to c_y , c_{gr} , and c_{by} .
 - In particular, it strongly stimulates c_y because it is **not** iso-luminant.