Opponent Color Spaces

- Perception of color is usually not best represented in RGB.
- A better model of HVS is the so-call opponent color model
- Opponent color space has three components:
- O_{1} is luminance component
- O_{2} is the red-green channel

$$
O_{2}=G-R
$$

- O_{3} is the blue-yellow channel

$$
O_{3}=B-Y=B-(R+G)
$$

- Comments:
- People don't perceive redish-greens, or bluish-yellows.
- As we discussed, O_{1} has a bandpass CSF.
- O_{2} and O_{3} have low pass CSF's with lower frequency cut-off.

Opponent Channel Contrast Sensitivity Functions (CSF)

- Typical CSF functions looks like the following.

Consequences of Opponent Channel CSF

- Luminance channel is
- Bandpass function
- Wide band width \Rightarrow high spatial resolution.
- Low frequency cut-off \Rightarrow insensitive to average luminance level.
- Chrominance channels are
- Lowpass function
- Lower band width \Rightarrow low spatial resolution.
- Low pass \Rightarrow sensitive to absolute chromaticity (hue and saturation).

Some Practical Consequences of Opponent Color Spaces

- Analog video has less bandwidth in I and Q channels.
- Chrominance components are typically subsampled 2-to1 in image compression applications.
- Black text on white paper is easy to read. (couples to O_{1})
- Yellow text on white paper is difficult to read. (couples to O_{3})
- Blue text on black background is difficult to read. (couples to O_{3})
- Color variations that do not change O_{1} are called "isoluminant".
- Hue refers to angle of color vector in $\left(O_{2}, O_{3}\right)$ space.
- Saturation refers to magnitude of color vector in $\left(O_{2}, O_{3}\right)$ space.

Opponent Color Space of Wandell

- First define the LMS color system which is approximately given by

$$
\left[\begin{array}{c}
L \\
M \\
S
\end{array}\right]=\left[\begin{array}{ccc}
0.2430 & 0.8560 & -0.0440 \\
-0.3910 & 1.1650 & 0.0870 \\
0.0100 & -0.0080 & 0.5630
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

- The opponent color space transform is then 11

$$
\left[\begin{array}{l}
O_{1} \\
O_{2} \\
O_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-0.59 & 0.80 & -0.12 \\
-0.34 & -0.11 & 0.93
\end{array}\right]\left[\begin{array}{c}
L \\
M \\
S
\end{array}\right]
$$

- We many use these two transforms together with the transform from sRGB to XYZ to compute the following transform.

$$
\left[\begin{array}{l}
O_{1} \\
O_{2} \\
O_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0.2814 & 0.6938 & 0.0638 \\
-0.0971 & 0.1458 & -0.0250 \\
-0.0930 & -0.2529 & 0.4665
\end{array}\right]\left[\begin{array}{c}
s R \\
s G \\
s B
\end{array}\right]
$$

- Comments:

- O_{1} is luminance component
$-O_{2}$ is referred to as the red-green channel (G-R)
$-O_{3}$ is referred to as the blue-yellow channel (B-Y)
- Also see the work of Mullen '85² and associated color transforms. 3

[^0]
Paradox?

- Why is blue text on yellow paper easy to read??
- Shouldn't this be hard to read since it stimulates the yellowblue color channel?

Better Understanding Opponent Color Spaces

- The XYZ to opponent color transformation is:

$$
\begin{aligned}
{\left[\begin{array}{l}
O_{1} \\
O_{2} \\
O_{3}
\end{array}\right] } & =\left[\begin{array}{ccc}
0.2430 & 0.8560 & -0.0440 \\
-0.4574 & 0.4279 & 0.0280 \\
-0.0303 & -0.4266 & 0.5290
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \\
& =\left[\begin{array}{c}
v_{y} \\
v_{g r} \\
v_{b y}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]
\end{aligned}
$$

- What are $v_{y}, v_{g r}$, and $v_{b y}$?
- They are row vectors in the XYZ color space.
- $v_{g r}$ is a vector point from red to green
- $v_{b y}$ is a vector point from yellow to blue
- They are not orthogonal!

Plots of $v_{y}, v_{g r}$, and $v_{b y}$

Answer to Paradox

- Since $v_{y}, v_{g r}$, and $v_{b y}$ are not orthogonal

$$
\left[\begin{array}{c}
v_{y} \\
v_{g r} \\
v_{b y}
\end{array}\right]\left[\begin{array}{lll}
v_{y}^{t} & v_{g r}^{t} & v_{b y}^{t}
\end{array}\right] \neq \text { identity matrix }
$$

- Blue text on yellow background produces and stimulus in the $v_{b y}$ space.

$$
\left[\begin{array}{l}
O_{1} \\
O_{2} \\
O_{3}
\end{array}\right]=\left[\begin{array}{c}
v_{y} \\
v_{g r} \\
v_{b y}
\end{array}\right] v_{b y}^{t}=\left[\begin{array}{c}
-0.3958 \\
-0.1539 \\
0.4627
\end{array}\right]
$$

- This stimulus is not isoluminant!
- Blue is much darker than yellow.

Basis Vectors for Opponent Color Spaces

- The transformation from opponent color space to XYZ is:

$$
\begin{aligned}
{\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] } & =\left[\begin{array}{ccc}
0.9341 & -1.7013 & 0.1677 \\
0.9450 & 0.4986 & 0.0522 \\
0.8157 & 0.3047 & 1.9422
\end{array}\right]\left[\begin{array}{l}
O_{1} \\
O_{2} \\
O_{3}
\end{array}\right] \\
& =\left[c_{y} c_{g r} c_{b y}\right]\left[\begin{array}{c}
O_{1} \\
O_{2} \\
O_{3}
\end{array}\right]
\end{aligned}
$$

- What are $c_{y}, c_{g r}$, and $c_{b y}$?
- They are column vectors in XYZ space.
- $c_{g r}$ is a vector which has no luminance component.
- $c_{b y}$ is a vector which has no luminance component.
- They are orthogonal to the vectors $v_{y}, v_{g r}$, and $v_{b y}$.

Plots of $c_{y}, c_{g r}$, and $c_{b y}$

Interpretation of Basis Vectors

- Since $c_{y}, c_{g r}$, and $c_{b y}$ are orthogonal to $v_{y}, v_{g r}$, and $v_{b y}$, we have

$$
\left[\begin{array}{c}
v_{y} \\
v_{g r} \\
v_{b y}
\end{array}\right]\left[\begin{array}{ccc}
c_{y} & c_{g r} & c_{b y}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Therefore, we have that

$$
\begin{aligned}
{\left[\begin{array}{l}
O_{1} \\
O_{2} \\
O_{3}
\end{array}\right] } & =\left[\begin{array}{c}
v_{y} \\
v_{g r} \\
v_{b y}
\end{array}\right] c_{b y} \\
& =\left[\begin{array}{ccc}
0.2430 & 0.8560 & -0.0440 \\
-0.4574 & 0.4279 & 0.0280 \\
-0.0303 & -0.4266 & 0.5290
\end{array}\right]\left[\begin{array}{l}
0.1677 \\
0.0522 \\
1.9422
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

- So, $c_{b y}$ is an isoluminant color variation.
- Something like a bright saturated blue on a dark red.

Solution to Paradox

- Why is blue text on yellow paper is easy to read??
- Solution:
- The blue-yellow combination generates the input $v_{b y}$.
- This input vector stimulates all three opponent channels because it is not orthogonal to $c_{y}, c_{g r}$, and $c_{b y}$.
- In particular, it strongly stimulates c_{y} because it is not iso-luminant.

[^0]: ${ }^{1}$ B. A. Wandell, Foundations of Vision, Sinauer Associates, Inc., Sunderland MA, 1995.
 ${ }^{2}$ K. T. Mullen, "The contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings," J. Physiol., vol. 359, pp. 381-400, 1985.
 ${ }^{3}$ B. W. Kolpatzik and C. A. Bouman, "Optimized Error Diffusion for Image Display," Journal of Electronic Imaging, vol. 1, no. 3, pp. 277-292, July 1992.

