EXPLORING PROTEOMIC VARIATION IN
PACIFIC OYSTERS (CRASSOSTREA GIGAS)
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» Crassostrea gigas provides ecosystem
services, basis for aquaculture
operations in Washington'
*Susceptible to ocean acidification and
ocean warming-°

*Limited set of experiments examining
oysters’ response to multiple
stressors that reflect wild conditions

OBJECTIVE: Understand how different environments drive
differential protein expression in response to stress.
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*Five experimental sites: Case Inlet, Fidalgo Bay, Port Gamble Bay, Skokomish
River Delta, and Willapa Bay

*Qutplanted 150 adult sibling C. gigas, 30 per site

*Eelgrass presence: assess effect of large-scale ecological interactions
*Continuous environmental chemistry monitoring

*Gill tissue collected after one month

*Data-independent mass spectrometry and shotgun proteomic methods used
to generate peptide spectra for samples*?

*Protein abundance data based on oyster seed spectra*”

SCIENCES

DATA-INDEPENDENT PROTEOMICS

RESULTS: Matched peptide spectra in ten oyster samples with stress-related proteins present
in the C. gigas proteome*>. We identified 6,688 proteins across five sites and two eelgrass
conditions, of which 43 were stress-related. Additionally, the carbohydrate metabolism pathway
was overrepresented amongst all samples.
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PROTEIN VARIATION Table 1.
ATP-binding cassgttc.a subtfamily A member 1 1.2533 C oe ff /'C /'e nts
Apoptosis-inducing factor 0.9215 o
Peroxiredoxin-5 0.9894 Of varla l' 10N f Or
Metabotropic glutamate receptor 7 2.6745
Catalase 0.4586 ab un da nce
Heat shock protejn beta-1 1.1964 of stress-
DnaJ homolog subfamily C member 3 1.0697 .
Heat shock protein beta-1 1.1687 related ,O/'Ofe/nS
Heat shock protein beta-1 1.3033 .
Glucose-6-phosphate 1-dehydrogenase 1.1410 across sites
Glycogen synthase kinase-3 beta 0.8576 and ee /g rass
Peroxidasin 0.9291 "
Heat shock 70 kDa protein 4L 0.8001 conditions. The
Heat shock protein 83 1.2868 1 1
Heat shock protein HSP 90-alpha 1 1.2881 Va/ues i O’/C&f@ <
Hypoxia up-regulated protein 1 1.8691 level of variation
Superoxide dismutase [Cu-Zn] 1.3620 .
Peroxiredoxin 0.7054 in stress-related
Bcl-2-like protein 1 1.4524 1
Histone deacetylase 4 1.8109 ’O roteins between
Insulin-like growth factor 2 mRNA-binding protein 1 0.6434 Sam,O/ esS.
Universal stress protein YXIE 1.9225
Universal stress protein SIl1388 1.4023
Putative universal stress protein SAOUHSC_01819 2.0495
Universal stress protein MSMEG_3950/MSMEI_3859 2.6966
Universal stress protein in QAH/OAS sulfhydrylase 3'region 1.8572
Putative universal stress protein SAOUHSC_01819 2.0495
Universal stress protein A-like protein 1.0244
Stress response protein NhaX 0.9036
Heat shock protein beta-1 1.0513
Cytochrome P450 1A1 1.4766
DnaJ homolog subfamily A member 1 1.4455
Heat shock protein beta-1 0.9842
Hepatocyte growth factor receptor 1.8164
Multidrug resistance-associated protein 1 0.8982
Heat shock protein beta-1 1.7581
Heat shock protein HSP 90-beta 1.2277
Heat shock protein beta-1 1.3033
Superoxide dismutase [Mn], mitochondrial 1.2061
Stress-induced-phosphoprotein 1 1.9065
Heat shock protein 75 kDa, mitochondrial 0.9907
Universal stress protein in QAH/OAS sulthydrylase 3'region 1.5555
Extracellular superoxide dismutase [Cu-Zn] 0.5662

FUTURE DIRECTIONS

*Preliminary insight demonstrates how stress-response is impacted by different

environmental conditions

Use data-specific peptide spectra

*Repeat proteomic analyses with increased sample size
Develop targeted assay for stress-related proteins

IMPORTANCE: Differences in protein

abundance across sites and eelgrass conditions
suggests site-specific environmental variables
influence C. gigas physiology (i.e. stress response
and energy metabolism).
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