Skip to main content

VNS for the Treatment of Inflammatory Disorders of the Gastrointestinal Tract

  • Chapter
  • First Online:
  • 1020 Accesses

Abstract

The brain and the gut communicate bi-directionally through the autonomic nervous system of which the vagus nerve is a major component. The vagus nerve has a well-documented anti-inflammatory activity through its afferents and the hypothalamic-pituitary-adrenal axis. More recently, an anti-inflammatory role of vagal efferents has also been discovered through the cholinergic anti-inflammatory pathway. Vagus nerve stimulation, used in the treatment of drug resistant epilepsy and depression, could be an effective tool to treat inflammatory disorders of the gastro-intestinal tract, such as inflammatory bowel disease, irritable bowel syndrome, as well as postoperative ileus which are characterized by an autonomic imbalance with a low vagal tone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

α7nAChR:

Alpha7 nicotinic Ach receptors

Ach:

Acetylcholine

ANS:

Autonomic nervous system

CAP:

Cholinergic anti-inflammatory pathway

CD:

Crohn’s disease

CRF:

Corticotrophin-releasing factor

DMNV:

Dorsal motor nucleus of the vagus

FDA:

Food and drug administration

HPA axis:

Hypothalamic pituitary adrenal axis

HRV:

Heart rate variability

IBD:

Inflammatory bowel disease

IBS:

Irritable bowel syndrome

IL:

Interleukin

LC:

Locus coeruleus

LPS:

Lipopolysaccharides

NTS:

Nucleus tractus solitarius

PB:

Parabrachial nucleus

POI:

Postoperative ileus

PVH:

Paraventricular nucleus of the hypothalamus

TNF:

Tumor necrosis factor

UC:

Ulcerative colitis

VN:

Vagus nerve

VNS:

Vagus nerve stimulation

References

  1. Mulak A, Bonaz B. Irritable bowel syndrome: a model of the brain-gut interactions. Med Sci Monit. 2004;10(4):RA55–62.

    PubMed  Google Scholar 

  2. Bonaz BL, Bernstein CN. Brain-gut interactions in inflammatory bowel disease. Gastroenterology. 2013;144(1):36–49.

    Article  PubMed  Google Scholar 

  3. Pellissier S, Dantzer C, Canini F, Mathieu N, Bonaz B. Psychological adjustment and autonomic disturbances in inflammatory bowel diseases and irritable bowel syndrome. Psychoneuroendocrinology. 2010;35(5):653–62.

    Article  PubMed  Google Scholar 

  4. Bonaz B, Picq C, Sinniger V, Mayol JF, Clarençon D. Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol Motil. 2013;25(3):208–21.

    Article  CAS  PubMed  Google Scholar 

  5. Prechtl JC, Powley TL. The fiber composition of the abdominal vagus of the rat. Anat Embryol (Berl). 1990;181(2):101–15.

    Article  CAS  Google Scholar 

  6. Altschuler SM, Escardo J, Lynn RB, Miselis RR. The central organization of the vagus nerve innervating the colon of the rat. Gastroenterology. 1993;104(2):502–9.

    CAS  PubMed  Google Scholar 

  7. Netter FH. Atlas of human anatomy. Ardsley: Ciba-Geigy Corporation; 1989.

    Google Scholar 

  8. Delmas et Laux. Anatomie médico-chirurgicale du système nerveux végétatif. Masson, 1933.

    Google Scholar 

  9. Berthoud HR, Carlson NR, Powley TL. Topography of efferent vagal innervation of the rat gastrointestinal tract. Am J Physiol. 1991;260(1 Pt 2):R200–7.

    CAS  PubMed  Google Scholar 

  10. Sharkey KA, Kroese AB. Consequences of intestinal inflammation on the enteric nervous system: neuronal activation induced by inflammatory mediators. Anat Rec. 2001;262(1):79–90.

    Article  CAS  PubMed  Google Scholar 

  11. Margolis KG, Stevanovic K, Karamooz N, Li ZS, Ahuja A, D’Autréaux F, Saurman V, Chalazonitis A, Gershon MD. Enteric neuronal density contributes to the severity of intestinal inflammation. Gastroenterology. 2011;141(2):588–98. 598.e1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Altschuler SM, Bao XM, Bieger D, Hopkins DA, Miselis RR. Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol. 1989;283(2):248–68.

    Article  CAS  PubMed  Google Scholar 

  13. Rinaman L, Card JP, Schwaber JS, Miselis RR. Ultrastructural demonstration of a gastric monosynaptic vagal circuit in the nucleus of the solitary tract in rat. J Neurosci. 1989;9(6):1985–96.

    CAS  PubMed  Google Scholar 

  14. Ricardo JA, Koh ET. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res. 1978;153(1):1–26.

    Article  CAS  PubMed  Google Scholar 

  15. Sawchenko PE. Central connections of the sensory and motor nuclei of the vagus nerve. J Auton Nerv Syst. 1983;9(1):13–26.

    Article  CAS  PubMed  Google Scholar 

  16. Ruggiero DA, Underwood MD, Mann JJ, Anwar M, Arango V. The human nucleus of the solitary tract: visceral pathways revealed with an “in vitro” postmortem tracing method. J Auton Nerv Syst. 2000;79(2–3):181–90.

    Article  CAS  PubMed  Google Scholar 

  17. Van Bockstaele EJ, Peoples J, Telegan P. Efferent projections of the nucleus of the solitary tract to peri-locus coeruleus dendrites in rat brain: evidence for a monosynaptic pathway. J Comp Neurol. 1999;412(3):410–28.

    Article  CAS  PubMed  Google Scholar 

  18. Aston-Jones G, Ennis M, Pieribone VA, Nickell WT, Shipley MT. The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science. 1986;234(4777):734–7.

    Article  CAS  PubMed  Google Scholar 

  19. Zagon A, Hughes DI. Gating of vagal inputs by sciatic afferents in nonspinally projecting neurons in the rat rostral ventrolateral medulla oblongata. Eur J Neurosci. 2001;13(4):781–92.

    Article  CAS  PubMed  Google Scholar 

  20. Conrad LC, Pfaff DW. Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. J Comp Neurol. 1976;169(2):221–61.

    Article  CAS  PubMed  Google Scholar 

  21. Norgren R. Taste pathways to hypothalamus and amygdala. J Comp Neurol. 1976;166(1):17–30.

    Article  CAS  PubMed  Google Scholar 

  22. Zagon A. Does the vagus nerve mediate the sixth sense? Trends Neurosci. 2001;24(11):671–3.

    Article  CAS  PubMed  Google Scholar 

  23. Goehler LE, Relton JK, Dripps D, Kiechle R, Tartaglia N, Maier SF, Watkins LR. Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication. Brain Res Bull. 1997;43(3):357–64.

    Article  CAS  PubMed  Google Scholar 

  24. Watkins LR, Goehler LE, Relton JK, Tartaglia N, Silbert L, Martin D, Maier SF. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci Lett. 1995;183(1–2):27–31.

    Article  CAS  PubMed  Google Scholar 

  25. Hosoi T, Okuma Y, Matsuda T, Nomura Y. Novel pathway for LPS-induced afferent vagus nerve activation: possible role of nodose ganglion. Auton Neurosci. 2005;120(1–2):104–7.

    Article  CAS  PubMed  Google Scholar 

  26. Taché Y, Brunnhuber S. From Hans Selye’s discovery of biological stress to the identification of corticotropin-releasing factor signaling pathways: implication in stress-related functional bowel diseases. Ann N Y Acad Sci. 2008;1148:29–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–62.

    Article  CAS  PubMed  Google Scholar 

  28. Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med. 2003;9(5–8):125–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–8.

    Article  CAS  PubMed  Google Scholar 

  30. de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, Berthoud HR, Uematsu S, Akira S, van den Wijngaard RM, Boeckxstaens GE. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005;6(8):844–51.

    Article  PubMed  CAS  Google Scholar 

  31. Sun Y, Li Q, Gui H, Xu DP, Yang YL, Su DF, Liu X. MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Res. 2013;23(11):1270–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, Gallowitsch-Puerta M, Ashok M, Czura CJ, Foxwell B, Tracey KJ, Ulloa L. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med. 2006;203(7):1623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huston JM, Rosas-Ballina M, Xue X, Dowling O, Ochani K, Ochani M, Yeboah MM, Chatterjee PK, Tracey KJ, Metz CN. Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. J Immunol. 2009;183(1):552–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Berthoud HR, Powley TL. Interaction between parasympathetic and sympathetic nerves in prevertebral ganglia: morphological evidence for vagal efferent innervation of ganglion cells in the rat. Microsc Res Tech. 1996;35(1):80–6.

    Article  CAS  PubMed  Google Scholar 

  35. Rosas-Ballina M, Tracey KJ. The neurology of the immune system: neural reflexes regulate immunity. Neuron. 2009;64(1):28–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Downs AM. Bond CE1, Hoover DB2. Localization of α7 nicotinic acetylcholine receptor mRNA and protein within the cholinergic anti-inflammatory pathway. Neuroscience. 2014;266:178–85.

    Article  CAS  PubMed  Google Scholar 

  37. Ji H, Rabbi MF, Labis B, Pavlov VA, Tracey KJ, Ghia JE. Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunol. 2014;7(2):335–47.

    Article  CAS  PubMed  Google Scholar 

  38. Xue N, Liang H, Yao H, Song XM, Li JG. The role of spleen in vagus nerve stimulation for treatment against septic shock in rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2011;23(5):263–6.

    CAS  PubMed  Google Scholar 

  39. Picq CA, Clarençon D, Sinniger VE, Bonaz BL, Mayol JF. Impact of Anesthetics on Immune Functions in a Rat Model of Vagus Nerve Stimulation. PLoS One. 2013;8(6):e67086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martelli D, Yao ST, McKinley MJ, McAllen RM. Reflex control of inflammation by sympathetic nerves, not the vagus. J Physiol. 2014;592(Pt 7):1677–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gautron L, Rutkowski JM, Burton MD, Wei W, Wan Y, Elmquist JK. Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen. J Comp Neurol. 2013;521(16):3741–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wessler I, Kirkpatrick CJ, Racké K. Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. Pharmacol Ther. 1998;77(1):59–79.

    Article  CAS  PubMed  Google Scholar 

  43. Cano G, Sved AF, Rinaman L, Rabin BS, Card JP. Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J Comp Neurol. 2001;439(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  44. Bratton BO, Martelli D, McKinley MJ, Trevaks D, Anderson CR, McAllen RM. Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons. Exp Physiol. 2012;97(11):1180–5.

    Article  CAS  PubMed  Google Scholar 

  45. Martelli D, McKinley MJ, McAllen RM. The cholinergic anti-inflammatory pathway: a critical review. Auton Neurosci. 2014;182:65–9.

    Article  CAS  PubMed  Google Scholar 

  46. Vida G, Peña G, Kanashiro A, Thompson-Bonilla Mdel R, Palange D, Deitch EA, Ulloa L. β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J. 2011;25(12):4476–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cailotto C, Gomez-Pinilla PJ, Costes LM, van der Vliet J, Di Giovangiulio M, Némethova A, Matteoli G, Boeckxstaens GE. Neuro-anatomical evidence indicating indirect modulation of macrophages by vagal efferents in the intestine but not in the spleen. PLoS One. 2014;9(1):e87785.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lanska DJ. J.L. Corning and vagal nerve stimulation for seizures in the 1880s. Neurology. 2002;58(3):452–9.

    Article  PubMed  Google Scholar 

  49. Bailey H, Bremer FA. Sensory cortical representation of the vagus nerve. J Neurophysiol. 1938;1:405–12.

    Google Scholar 

  50. Penry JK, Dean JC. Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia. 1990;31(Suppl 2):S40–3.

    Article  PubMed  Google Scholar 

  51. Rush AJ, Marangell LB, Sackeim HA, George MS, Brannan SK, Davis SM, Howland R, Kling MA, Rittberg BR, Burke WJ, Rapaport MH, Zajecka J, Nierenberg AA, Husain MM, Ginsberg D, Cooke RG. Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial. Biol Psychiatry. 2005;58(5):347–54.

    Article  PubMed  Google Scholar 

  52. Rush AJ, Sackeim HA, Marangell LB, George MS, Brannan SK, Davis SM, Lavori P, Howland R, Kling MA, Rittberg B, Carpenter L, Ninan P, Moreno F, Schwartz T, Conway C, Burke M, Barry JJ. Effects of 12 months of vagus nerve stimulation in treatment-resistant depression: a naturalistic study. Biol Psychiatry. 2005;58(5):355–63.

    Article  PubMed  Google Scholar 

  53. Fanselow EE. Central mechanisms of cranial nerve stimulation for epilepsy. Surg Neurol Int. 2012;3(Suppl 4):S247–54.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Krahl SE, Senanayake SS, Handforth A. Destruction of peripheral C-fibers does not alter subsequent vagus nerve stimulation-induced seizure suppression in rats. Epilepsia. 2001;42(5):586–9.

    Article  CAS  PubMed  Google Scholar 

  55. Zanchetti A, Wang SC, Moruzzi G. Effect of afferent vagal stimulation on the electroencephalogram of the cat in cerebral isolation. Boll Soc Ital Biol Sper. 1952;28(4):627–8.

    CAS  PubMed  Google Scholar 

  56. Panebianco M, Rigby A, Weston J, Marson AG. Vagus nerve stimulation for partial seizures. Cochrane Database Syst Rev. 2015;4:CD002896.

    Google Scholar 

  57. Groves DA, Brown VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev. 2005;29(3):493–500.

    Article  PubMed  Google Scholar 

  58. Naritoku DK, Terry WJ, Helfert RH. Regional induction of fos immunoreactivity in the brain by anticonvulsant stimulation of the vagus nerve. Epilepsy Res. 1995;22(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  59. Chae JH, Nahas Z, Lomarev M, Denslow S, Lorberbaum JP, Bohning DE, George MS. A review of functional neuroimaging studies of vagus nerve stimulation (VNS). J Psychiatr Res. 2003;37(6):443–55.

    Article  PubMed  Google Scholar 

  60. Morris 3rd GL, Mueller WM. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01-E05. Neurology. 1999;53(8):1731–5.

    Article  PubMed  Google Scholar 

  61. Tisi G, Franzini A, Messina G, Savino M, Gambini O. Vagus nerve stimulation therapy in treatment-resistant depression: a series report. Psychiatry Clin Neurosci. 2014;68(8):606–11.

    Article  PubMed  Google Scholar 

  62. Bajbouj M, Merkl A, Schlaepfer TE, Frick C, Zobel A, Maier W, O’Keane V, Corcoran C, Adolfsson R, Trimble M, Rau H, Hoff HJ, Padberg F, Müller-Siecheneder F, Audenaert K, van den Abbeele D, Matthews K, Christmas D, Eljamel S, Heuser I. Two-year outcome of vagus nerve stimulation in treatment-resistant depression. J Clin Psychopharmacol. 2010;30(3):273–81.

    Article  PubMed  Google Scholar 

  63. Reid SA. Surgical technique for implantation of the neurocybernetic prosthesis. Epilepsia. 1990;31(Suppl 2):S38–9.

    Article  PubMed  Google Scholar 

  64. Hamlin RL, Smith CR. Effects of vagal stimulation on S-A and A-V nodes. Am J Physiol. 1968;215(3):560–8.

    CAS  PubMed  Google Scholar 

  65. Ben-Menachem E. Vagus nerve stimulation, side effects, and long-term safety. J Clin Neurophysiol. 2001;18(5):415–8.

    Article  CAS  PubMed  Google Scholar 

  66. Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, Sudan S, Czura CJ, Ivanova SM, Tracey KJ. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med. 2002;195(6):781–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Costantini TW, Bansal V, Krzyzaniak M, Putnam JG, Peterson CY, Loomis WH, Wolf P, Baird A, Eliceiri BP, Coimbra R. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. Am J Physiol Gastrointest Liver Physiol. 2010;299(6):G1308–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lomarev M, Denslow S, Nahas Z, Chae JH, George MS, Bohning DE. Vagus nerve stimulation (VNS) synchronized BOLD fMRI suggests that VNS in depressed adults has frequency/dose dependent effects. J Psychiatr Res. 2002;36(4):219–27.

    Article  PubMed  Google Scholar 

  69. Reyt S, Picq C, Sinniger V, Clarençon D, Bonaz B, David O. Dynamic Causal Modelling and physiological confounds: a functional MRI study of vagus nerve stimulation. Neuroimage. 2010;52(4):1456–64.

    Article  PubMed  Google Scholar 

  70. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW, Kaplan GG. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46–54.

    Article  PubMed  Google Scholar 

  71. Danese S, Fiocchi C. Etiopathogenesis of inflammatory bowel diseases. World J Gastroenterol. 2006;12(30):4807–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lindgren S, Lilja B, Rosén I, Sundkvist G. Disturbed autonomic nerve function in patients with Crohn’s disease. Scand J Gastroenterol. 1991;26(4):361–6.

    Article  CAS  PubMed  Google Scholar 

  73. Lindgren S, Stewenius J, Sjölund K, Lilja B, Sundkvist G. Autonomic vagal nerve dysfunction in patients with ulcerative colitis. Scand J Gastroenterol. 1993;28(7):638–42.

    Article  CAS  PubMed  Google Scholar 

  74. Billiet T, Rutgeerts P, Ferrante M, Van Assche G, Vermeire S. Targeting TNF-α for the treatment of inflammatory bowel disease. Expert Opin Biol Ther. 2014;14(1):75–101.

    Article  CAS  PubMed  Google Scholar 

  75. McLean LP, Cross RK. Adverse events in IBD: to stop or continue immune suppressant and biologic treatment. Expert Rev Gastroenterol Hepatol. 2014;8(3):223–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cerveny P, Bortlik M, Vlcek J, Kubena A, Lukás M. Non-adherence to treatment in inflammatory bowel disease in Czech Republic. J Crohns Colitis. 2007;1(2):77–81.

    Article  PubMed  Google Scholar 

  77. Pellissier S, Dantzer C, Mondillon L, Trocme C, Gauchez AS, Ducros V, Mathieu N, Toussaint B, Fournier A, Canini F, Bonaz B. Relationship between vagal tone, cortisol, TNF-alpha, epinephrine and negative affects in Crohn’s disease and irritable bowel syndrome. PLoS One. 2014;9(9):e105328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Taché Y, Bonaz B. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J Clin Invest. 2007;117(1):33–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Canavan C, West J, Card T. The epidemiology of irritable bowel syndrome. Clin Epidemiol. 2014;6:71–80.

    PubMed  PubMed Central  Google Scholar 

  80. Camilleri M. Pathophysiology in irritable bowel syndrome. Drug News Perspect. 2001;14(5):268–78.

    Article  CAS  PubMed  Google Scholar 

  81. Chang L. The association of functional gastrointestinal disorders and fibromyalgia. Eur J Surg Suppl. 1998;583:32–6.

    Article  Google Scholar 

  82. Garakani A, Win T, Virk S, Gupta S, Kaplan D, Masand PS. Comorbidity of irritable bowel syndrome in psychiatric patients: a review. Am J Ther. 2003;10(1):61–7.

    Article  PubMed  Google Scholar 

  83. Bradford K, Shih W, Videlock EJ, Presson AP, Naliboff BD, Mayer EA, Chang L. Association between early adverse life events and irritable bowel syndrome. Clin Gastroenterol Hepatol. 2012 Apr;10(4):385–90.e1–3.

    Article  PubMed  Google Scholar 

  84. Ritchie J. Pain from distension of the pelvic colon by inflating a balloon in the irritable colon syndrome. Gut. 1973;14(2):125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mayer EA, Gebhart GF. Basic and clinical aspects of visceral hyperalgesia. Gastroenterology. 1994;107(1):271–93.

    Article  CAS  PubMed  Google Scholar 

  86. Brierley SM, Linden DR. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat Rev Gastroenterol Hepatol. 2014;11(10):611–27.

    PubMed  Google Scholar 

  87. Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cottrell GS, Santini D, Pasquinelli G, Morselli-Labate AM, Grady EF, Bunnett NW, Collins SM, Corinaldesi R. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology. 2004;126(3):693–702.

    Article  PubMed  Google Scholar 

  88. Gwee KA, Graham JC, McKendrick MW, Collins SM, Marshall JS, Walters SJ, Read NW. Psychometric scores and persistence of irritable bowel after infectious diarrhoea. Lancet. 1996;347(8995):150–3.

    Article  CAS  PubMed  Google Scholar 

  89. Spence MJ, Moss-Morris R. The cognitive behavioural model of irritable bowel syndrome: a prospective investigation of patients with gastroenteritis. Gut. 2007;56(8):1066–71.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Catanzaro R, Occhipinti S, Calabrese F, Anzalone MG, Milazzo M, Italia A, Marotta F. Irritable bowel syndrome: new findings in pathophysiological and therapeutic field. Minerva Gastroenterol Dietol. 2014;60(2):151–63.

    CAS  PubMed  Google Scholar 

  91. Bonaz B, Baciu M, Papillon E, Bost R, Gueddah N, Le Bas JF, Fournet J, Segebarth C. Central processing of rectal pain in patients with irritable bowel syndrome: an fMRI study. Am J Gastroenterol. 2002;97(3):654–61.

    Article  CAS  PubMed  Google Scholar 

  92. Yunus MB. Role of central sensitization in symptoms beyond muscle pain, and the evaluation of a patient with widespread pain. Best Pract Res Clin Rheumatol. 2007;21(3):481–97.

    Article  PubMed  Google Scholar 

  93. Hinton DE, Hofmann SG, Pollack MH, Otto MW. Mechanisms of efficacy of CBT for Cambodian refugees with PTSD: improvement in emotion regulation and orthostatic blood pressure response. CNS Neurosci Ther. 2009;15(3):255–63.

    Article  PubMed  Google Scholar 

  94. Aubert AE, Verheyden B, Beckers F, Tack J, Vandenberghe J. Cardiac autonomic regulation under hypnosis assessed by heart rate variability: spectral analysis and fractal complexity. Neuropsychobiology. 2009;60(2):104–12.

    Article  PubMed  Google Scholar 

  95. Ford AC, Quigley EM, Lacy BE, Lembo AJ, Saito YA, Schiller LR, Soffer EE, Spiegel BM, Moayyedi P. Effect of antidepressants and psychological therapies, including hypnotherapy, in irritable bowel syndrome: systematic review and meta-analysis. Am J Gastroenterol. 2014;109(9):1350–65.

    Article  CAS  PubMed  Google Scholar 

  96. Zurowski D, Nowak Ł, Wordliczek J, Dobrogowski J, Thor PJ. Effects of vagus nerve stimulation in visceral pain model. Folia Med Cracov. 2012;52(1–2):57–69.

    PubMed  Google Scholar 

  97. Zhang X, Cao B, Yan N, Liu J, Wang J, Tung VO, Li Y. Vagus nerve stimulation modulates visceral pain-related affective memory. Behav Brain Res. 2013;236(1):8–15.

    Article  PubMed  Google Scholar 

  98. Kirchner A, Stefan H, Bastian K, Birklein F. Vagus nerve stimulation suppresses pain but has limited effects on neurogenic inflammation in humans. Eur J Pain. 2006;10(5):449–55.

    Article  PubMed  Google Scholar 

  99. Holzer P, Lippe IT, Amann R. Participation of capsaicin-sensitive afferent neurons in gastric motor inhibition caused by laparotomy and intraperitoneal acid. Neuroscience. 1992;48(3):715–22.

    Article  CAS  PubMed  Google Scholar 

  100. Bonaz B, Plourde V, Taché Y. Abdominal surgery induces Fos immunoreactivity in the rat brain. J Comp Neurol. 1994;349(2):212–22.

    Article  CAS  PubMed  Google Scholar 

  101. Barquist E, Bonaz B, Martinez V, Rivier J, Zinner MJ, Taché Y. Neuronal pathways involved in abdominal surgery-induced gastric ileus in rats. Am J Physiol. 1996;270(4 Pt 2):R888–94.

    CAS  PubMed  Google Scholar 

  102. Luckey A, Wang L, Jamieson PM, Basa NR, Million M, Czimmer J, Vale W, Taché Y. Corticotropin-releasing factor receptor 1-deficient mice do not develop postoperative gastric ileus. Gastroenterology. 2003;125(3):654–9.

    Article  CAS  PubMed  Google Scholar 

  103. Kalff JC, Carlos TM, Schraut WH, Billiar TR, Simmons RL, Bauer AJ. Surgically induced leukocytic infiltrates within the rat intestinal muscularis mediate postoperative ileus. Gastroenterology. 1999;117(2):378–87.

    Article  CAS  PubMed  Google Scholar 

  104. de Jonge WJ, van den Wijngaard RM, The FO, ter Beek ML, Bennink RJ, Tytgat GN, Buijs RM, Reitsma PH, van Deventer SJ, Boeckxstaens GE. Postoperative ileus is maintained by intestinal immune infiltrates that activate inhibitory neural pathways in mice. Gastroenterology. 2003;125(4):1137–47.

    Article  PubMed  Google Scholar 

  105. The FO, Boeckxstaens GE, Snoek SA, Cash JL, Bennink R, Larosa GJ, van den Wijngaard RM, Greaves DR, de Jonge WJ. Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice. Gastroenterology. 2007;133(4):1219–28.

    Article  PubMed  CAS  Google Scholar 

  106. Löwenberg M, Verhaar A, van den Blink B, ten Kate F, van Deventer S, Peppelenbosch M, Hommes D. Specific inhibition of c-Raf activity by semapimod induces clinical remission in severe Crohn’s disease. J Immunol. 2005;175(4):2293–300.

    Article  PubMed  Google Scholar 

  107. The FO, Cailotto C, van der Vliet J, de Jonge WJ, Bennink RJ, Buijs RM, Boeckxstaens GE. Central activation of the cholinergic anti-inflammatory pathway reduces surgical inflammation in experimental post-operative ileus. Br J Pharmacol. 2011;163(5):1007–16.

    Article  CAS  PubMed  Google Scholar 

  108. Noble EJ, Harris R, Hosie KB, Thomas S, Lewis SJ. Gum chewing reduces postoperative ileus? A systematic review and meta-analysis. Int J Surg. 2009;7(2):100–5.

    Article  PubMed  Google Scholar 

  109. Levin F, Edholm T, Schmidt PT, Grybäck P, Jacobsson H, Degerblad M, Höybye C, Holst JJ, Rehfeld JF, Hellström PM, Näslund E. Ghrelin stimulates gastric emptying and hunger in normal-weight humans. J Clin Endocrinol Metab. 2006;91(9):3296–302.

    Article  CAS  PubMed  Google Scholar 

  110. Stengel A, Goebel-Stengel M, Wang L, Shaikh A, Lambrecht NW, Rivier J, Taché Y. Abdominal surgery inhibits circulating acyl ghrelin and ghrelin-O-acyltransferase levels in rats: role of the somatostatin receptor subtype 2. Am J Physiol Gastrointest Liver Physiol. 2011;301(2):G239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Woodbury DM, Woodbury JW. Effects of vagal stimulation on experimentally induced seizures in rats. Epilepsia. 1990;31(Suppl 2):S7–19.

    Article  PubMed  Google Scholar 

  112. Chung IS, Kim JA, Kim JA, Choi HS, Lee JJ, Yang M, Ahn HJ, Lee SM. Reactive oxygen species by isoflurane mediates inhibition of nuclear factor κB activation in lipopolysaccharide-induced acute inflammation of the lung. Anesth Analg. 2013;116(2):327–35.

    Article  CAS  PubMed  Google Scholar 

  113. Garutti I, Rancan L, Simón C, Cusati G, Sanchez-Pedrosa G, Moraga F, Olmedilla L, Lopez-Gil MT, Vara E. Intravenous lidocaine decreases tumor necrosis factor alpha expression both locally and systemically in pigs undergoing lung resection surgery. Anesth Analg. 2014;119(4):815–28.

    Article  CAS  PubMed  Google Scholar 

  114. Meregnani J, Clarençon D, Vivier M, Peinnequin A, Mouret C, Sinniger V, Picq C, Job A, Canini F, Jacquier-Sarlin M, Bonaz B. Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci. 2011;160(1–2):82–9.

    Article  CAS  PubMed  Google Scholar 

  115. Travagli RA, Gillis RA, Rossiter CD, Vicini S. Glutamate and GABA-mediated synaptic currents in neurons of the rat dorsal motor nucleus of the vagus. Am J Physiol. 1991;260(3 Pt 1):G531–6.

    CAS  PubMed  Google Scholar 

  116. Fogel R, Zhang X, Renehan WE. Relationships between the morphology and function of gastric and intestinal distention-sensitive neurons in the dorsal motor nucleus of the vagus. J Comp Neurol. 1996;364(1):78–91.

    Article  CAS  PubMed  Google Scholar 

  117. Travagli RA, Hermann GE, Browning KN, Rogers RC. Brainstem circuits regulating gastric function. Annu Rev Physiol. 2006;68:279–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Osharina V, Bagaev V, Wallois F, Larnicol N. Autonomic response and Fos expression in the NTS following intermittent vagal stimulation: importance of pulse frequency. Auton Neurosci. 2006;126-127:72–80.

    Article  CAS  PubMed  Google Scholar 

  119. Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci. 2002;25:433–69.

    Article  CAS  PubMed  Google Scholar 

  120. Clarençon D, Pellissier S, Sinniger V, Kibleur A, Hoffman D, Vercueil L, David O, Bonaz B. Long term effects of low frequency (10 hz) vagus nerve stimulation on EEG and heart rate variability in Crohn’s disease: a case report. Brain Stimul. 2014;7(6):914–6.

    Article  PubMed  Google Scholar 

  121. Bonaz B, Sinniger V, Hoffmann D, Clarençon D, Mathieu N, Dantzer C, Vercueil L, Picq C, Trocmé C, Faure P, Cracowski JL, Pellissier S. Chronic vagus nerve stimulation in Crohn’s disease: a 6-month follow-up pilot study. Neurogastroenterol Motil. 2016;28(6):948–53.

    Google Scholar 

  122. Peuker ET, Filler TJ. The nerve supply of the human auricle. Clin Anat 2002;15(1):35–7.

    Google Scholar 

  123. Nomura S, Mizuno N. Central distribution of primary afferent fibers in the Arnold’s nerve (the auricular branch of the vagus nerve): a transganglionic HRP study in the cat. Brain Res. 1984;292(2):199–205.

    Article  CAS  PubMed  Google Scholar 

  124. Gao XY, Rong P, Ben H, Liu K, Zhu B, Zhang S. Morphological and electrophysiological characterization of auricular branch of vagus nerve: projections to the NTS in mediating cardiovascular inhibition evoked by the acupuncture-like stimulation. Abstr Soc Neurosci. 2010;694:22/HHH45.

    Google Scholar 

  125. Hein E, Nowak M, Kiess O, Biermann T, Bayerlein K, Kornhuber J, Kraus T. Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J Neural Transm. 2013;120(5):821–7.

    Article  PubMed  Google Scholar 

  126. Frangos E, Ellrich J, Komisaruk BR. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8(3):624–36.

    Article  PubMed  Google Scholar 

  127. Zhao YX, He W, Jing XH, Liu JL, Rong PJ, Ben H, Liu K, Zhu B. Transcutaneous auricular vagus nerve stimulation protects endotoxemic rat from lipopolysaccharide-induced inflammation. Evid Based Complement Alternat Med. 2012;2012:627023.

    PubMed  PubMed Central  Google Scholar 

  128. Stefan H, Kreiselmeyer G, Kerling F, Kurzbuch K, Rauch C, Heers M, Kasper BS, Hammen T, Rzonsa M, Pauli E, Ellrich J, Graf W, Hopfengärtner R. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia. 2012;53(7):e115–8.

    Article  PubMed  Google Scholar 

  129. Aihua L, Lu S, Liping L, Xiuru W, Hua L, Yuping W. A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy. Epilepsy Behav. 2014;39:105–10.

    Article  PubMed  Google Scholar 

  130. Rong P, Liu A, Zhang J, Wang Y, He W, Yang A, Li L, Ben H, Li L, Liu H, Wu P, Liu R, Zhao Y, Zhang J, Huang F, Li X, Zhu B. Transcutaneous vagus nerve stimulation for refractory epilepsy: a randomized controlled trial. Clin Sci (Lond). 2014; [Epub ahead of print].

    Google Scholar 

  131. Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 2014;7(6):871–7.

    Article  PubMed  Google Scholar 

  132. Nesbitt AD. Marin JC1, Tompkins E1, Ruttledge MH1, Goadsby PJ2. Initial use of a novel noninvasive vagus nerve stimulator for cluster headache treatment. Neurology. 2015;84(12):1249–53.

    Article  CAS  PubMed  Google Scholar 

  133. Moscato D, Moscato FR. Treatment of chronic migraine by means of vagal stimulator [abstract]. J Headache Pain. 2013;14(Suppl):56–7.

    Google Scholar 

  134. Abraham WT, Stough WG, Piña IL, Linde C, Borer JS, De Ferrari GM, Mehran R, Stein KM, Vincent A, Yadav JS, Anker SD, Zannad F. Trials of implantable monitoring devices in heart failure: which design is optimal? Nat Rev Cardiol. 2014;11(10):576–85.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Bonaz MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bonaz, B., Sinniger, V., Pellissier, S., Clarençon, D. (2017). VNS for the Treatment of Inflammatory Disorders of the Gastrointestinal Tract. In: Majid, A. (eds) Electroceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-28612-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28612-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28610-5

  • Online ISBN: 978-3-319-28612-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics