
Many modern computer systems – including systems that form part of our critical infrastructure,
the Internet of Things and Machine to Machine communication – run a daily gauntlet of numerous
and varied cyber-threats. A lot of these systems have specific security objectives related to their features
and special aspects of their use.

To achieve these objectives the system needs to implement an appropriate security policy – and that policy
needs to be firmly enforced. Indeed, without that enforcement, security becomes a drain on resources as
it attempts to plug multiple holes. Security experts agree that strict enforcement of proper security policies
plays the key role in securing the system. But if the issue is just about policy why are systems still insecure?

Common-purpose OS are incapable of conforming to the precise security policies of each critical
application because common-purpose solutions are flexible and versatile but not intended to be secure
by nature. A special-purpose system is likely to implement its specified policy with some guarantees.
But it is both difficult and expensive to assure full implementation of each specific set of security
requirements – and the process needs to begin from the ground up in each individual system.

There is a gap in the market for products which implement diverse security policies for systems requiring
security assurance. KasperskyOS aims to close this gap by providing a high-assurance secure platform
which is capable of enforcing any given policy for different critical applications.

KasperskyOS aims to protect software and data systems from the consequences of the intrusion of
malicious code, viruses and hacker attacks. These can provoke harmful behavior in any part of the system,
potentially resulting in loss or leakage of sensitive data, reduced performance and denial of service.

In addition it reduces the risk of harm caused by program bugs, unintentional mistakes or pre-
meditated abuse.

Unified low-level interprocess
communication. The microkernel of the
operating system implements the low-level IPC
as the only way for processes to interact.

Complete mediation in access control.
Interprocess communications are controlled
according to the desired security policy and this
control cannot be bypassed by any means.

Typed Communications. Communications
are categorized by type and properly handled by
security runtime to fill the semantic gap between
low-level IPC and high-level security policies.

No anonymous messaging. All processes
and their types of permitted communications
must be configured before execution, any other
interaction is denied by default.

Separated security server. The enforcement
of a specific policy is not a security kernel
concern but is the sole task of an independent
engine which returns a verdict on whether
access is permitted or not.

MOTIVATION

PURPOSE

CONCEPTS

 KasperskyOS
Whitepaper

© 2014 Kaspersky Lab ZAO. All rights reserved. Registered trademarks and service marks are the property of their respective owners.

Proprietary microkernel and independent
security engine. KasperskyOS is based on
a reliable microkernel that implements the only way
of communicating. This lightweight microkernel can
be implemented on various platforms. At the same
time the loosely coupled security engine makes
it possible to replace the in-house microkernel with
another kernel if necessary.

Multi-level compatibility. While the system is
kept mostly POSIX-compatible, the use of a native
API further guarantees the secure behavior
of applications. The developer can choose how
to keep a proper balance between program code
compatibility and security.

Security domain separation: KasperskyOS
efficiently separates security domains –
confined groups of applications with a restricted
influence on each other. This does not preclude
the possibility of interdomain communication,
if explicitly allowed.

Mandatory identification and labeling.
All applications in KasperskyOS are accompanied
by their security configuration. Nobody can install
an application without installing its relevant
behavior configuration. Hardware and application-
level resources (files, databases, network ports,
etc.) are labelled with appropriate security
attributes. It is impossible to access a resource
that doesn’t have a security label.

Diverse policies enforcement. An independent
security engine can enforce the policy that best
matches the identified security objectives. The
security policy can also be individually configured
for every application in the system.

Tamperproof configuration and services.
The security configuration is stored in protected
memory and can be accessed by trusted
services only, which are also restricted in their
communications.

FEATURES

Initially secure system. KasperskyOS is designed
with security in mind and remains secure during its
whole lifecycle.

Modular design. A modular approach to system
design minimizes the footprint of the trusted base
and makes it possible to build each individual
solution on a case-by-case basis.

Secure architecture of applications. Application
design is based on a component model that makes
secure development easy and elegant.

Easy-to-configure policies. IPC typing and simple
configuration language help to easily define the
rules of interprocess communication and access
control.

Verifiability. Strict adherence to security concepts
in system design and implementation makes
it possible to verify the security of all solutions
based on KasperskyOS.

ADVANTAGES

SUPPORTED ARCHITECTURES

• KasperskyOS for x86/x64
CPU: Pentium II or higher
RAM: 8Mb or more
Ethernet: Realtek RTL8139, Intel i82580

• KasperskyOS for ARM
CPU: ARMv7 or higher
RAM: 8Mb or more

