Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ground rules of the pluripotency gene regulatory network

Key Points

  • Pluripotency exists transiently in the early embryo and can be recapitulated in vitro.

  • Pluripotency is stabilized by an interconnected network of pluripotency-associated genes.

  • The pluripotency gene regulatory network integrates external signals, and exerts control over the decision between self-renewal and differentiation at the transcriptional, post-transcriptional and epigenetic levels.

  • Diverse pathways — including chromatin-mediated mechanisms, RNA-based regulation and 3D genome organization — work together to maintain pluripotency.

  • Recent evidence of alternative pluripotency states indicates the regulatory flexibility of this network.

Abstract

Pluripotency is a state that exists transiently in the early embryo and, remarkably, can be recapitulated in vitro by deriving embryonic stem cells or by reprogramming somatic cells to become induced pluripotent stem cells. The state of pluripotency, which is stabilized by an interconnected network of pluripotency-associated genes, integrates external signals and exerts control over the decision between self-renewal and differentiation at the transcriptional, post-transcriptional and epigenetic levels. Recent evidence of alternative pluripotency states indicates the regulatory flexibility of this network. Insights into the underlying principles of the pluripotency network may provide unprecedented opportunities for studying development and for regenerative medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bistability of the pluripotency gene regulatory network.
Figure 2: Cooperative binding of pluripotency factors.
Figure 3: Global retargeting of OCT4–SOX2–NANOG binding and remodelling of the enhancer landscape during the transition between pluripotency states.
Figure 4: An RNA-mediated 'tug of war' in the regulation of the pluripotency gene regulatory network.

Similar content being viewed by others

References

  1. Ramalho-Santos, M. & Willenbring, H. On the origin of the term “stem cell”. Cell Stem Cell 1, 35–38 (2007).

    CAS  PubMed  Google Scholar 

  2. Pappenheim, A. Über Entwicklung und Ausbildung der Erythroblasten. Virchows Arch. 145, 587–643 (in German) (1896).

    Google Scholar 

  3. Haeckel, E. Anthropogenie; oder, Entwicklungsgeschichte des Menschen 3rd edn (in German) (Wilhelm Engelmann, 1877).

    Google Scholar 

  4. Evans, M. J. The isolation and properties of a clonal tissue culture strain of pluripotent mouse teratoma cells. J. Embryol. Exp. Morphol. 28, 163–176 (1972).

    CAS  PubMed  Google Scholar 

  5. Rosenthal, M. D., Wishnow, R. M. & Sato, G. H. In vitro growth and differentiation of clonal populations of multipotential mouse cells derived from a transplantable testicular teratocarcinoma. J. Natl Cancer Inst. 44, 1001–1014 (1970).

    CAS  PubMed  Google Scholar 

  6. Kahan, B. W. & Ephrussi, B. Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. J. Natl Cancer Inst. 44, 1015–1036 (1970).

    CAS  PubMed  Google Scholar 

  7. Finch, B. W. & Ephrussi, B. Retention of multiple developmental potentialities by cells of a mouse testicular teratocarcinoma during prolonged culture in vitro and their extinction upon hybridization with cells of permanent lines. Proc. Natl Acad. Sci. USA 57, 615–621 (1967).

    CAS  PubMed  Google Scholar 

  8. Solter, D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat. Rev. Genet. 7, 319–327 (2006).

    CAS  PubMed  Google Scholar 

  9. Wu, J., Yamauchi, T. & Izpisua Belmonte, J. C. An overview of mammalian pluripotency. Development 143, 1644–1648 (2016).

    CAS  PubMed  Google Scholar 

  10. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    CAS  PubMed  Google Scholar 

  11. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981). References 10 and 11 are seminal papers that describe the successful derivation and stable culture of ESCs from mouse blastocysts, thereby 'setting the stage' for the study of the PGRN.

    CAS  PubMed  Google Scholar 

  12. Matsui, Y., Zsebo, K. & Hogan, B. L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847 (1992).

    CAS  PubMed  Google Scholar 

  13. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl Acad. Sci. USA 90, 8424–8428 (1993).

    CAS  PubMed  Google Scholar 

  14. Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    CAS  PubMed  Google Scholar 

  15. Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007). References 14 and 15 describe for the first time the derivation of epiSCs, thereby 'setting the stage' for further study of the PGRN.

    CAS  PubMed  Google Scholar 

  16. Huang, Y., Osorno, R., Tsakiridis, A. & Wilson, V. In vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation. Cell Rep. 2, 1571–1578 (2012).

    CAS  PubMed  Google Scholar 

  17. Kojima, Y. et al. The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak. Cell Stem Cell 14, 107–120 (2014).

    CAS  PubMed  Google Scholar 

  18. Wu, J. et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature 521, 316–321 (2015). This paper describes a new type of PSC that selectively integrates into the posterior proximal region of the post-implantation epiblast and can contribute to interspecific chimaeras when injected into the posterior epiblast of post-implantation mouse embryos.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006). This paper describes the seminal discovery that PSCs can be induced by reprogramming somatic cells with pluripotency-associated transcription factors.

    CAS  PubMed  Google Scholar 

  20. Gonzalez, F., Boue, S. & Izpisua Belmonte, J. C. Methods for making induced pluripotent stem cells: reprogramming à la carte. Nat. Rev. Genet. 12, 231–242 (2011).

    CAS  PubMed  Google Scholar 

  21. Young, R. A. Control of the embryonic stem cell state. Cell 144, 940–954 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ng, H. H. & Surani, M. A. The transcriptional and signalling networks of pluripotency. Nat. Cell Biol. 13, 490–496 (2011).

    CAS  PubMed  Google Scholar 

  23. Scholer, H. R., Hatzopoulos, A. K., Balling, R., Suzuki, N. & Gruss, P. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J. 8, 2543–2550 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

    CAS  PubMed  Google Scholar 

  25. Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376 (2000).

    CAS  PubMed  Google Scholar 

  26. Avilion, A. A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Masui, S. et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 9, 625–635 (2007).

    CAS  PubMed  Google Scholar 

  28. Thomson, M. et al. Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell 145, 875–889 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

    CAS  PubMed  Google Scholar 

  30. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    CAS  PubMed  Google Scholar 

  31. Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).

    CAS  PubMed  Google Scholar 

  32. Silva, J. et al. Nanog is the gateway to the pluripotent ground state. Cell 138, 722–737 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Suzuki, A. et al. Nanog binds to Smad1 and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells. Proc. Natl Acad. Sci. USA 103, 10294–10299 (2006).

    CAS  PubMed  Google Scholar 

  34. Macarthur, B. D., Ma'ayan, A. & Lemischka, I. R. Systems biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol. Cell Biol. 10, 672–681 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Orkin, S. H. et al. The transcriptional network controlling pluripotency in ES cells. Cold Spring Harb. Symp. Quant. Biol. 73, 195–202 (2008).

    CAS  PubMed  Google Scholar 

  36. Hackett, J. A. & Surani, M. A. Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell 15, 416–430 (2014).

    CAS  PubMed  Google Scholar 

  37. Adamo, A. et al. LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat. Cell Biol. 13, 652–659 (2011).

    CAS  PubMed  Google Scholar 

  38. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005). This seminal paper describes the discovery of the genome-wide co-occupancy of OSN, and suggests that the PGRN consists of autoregulatory and feedforward loops.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chew, J. L. et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol. Cell. Biol. 25, 6031–6046 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rodda, D. J. et al. Transcriptional regulation of Nanog by OCT4 and SOX2. J. Biol. Chem. 280, 24731–24737 (2005).

    CAS  PubMed  Google Scholar 

  41. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    CAS  PubMed  Google Scholar 

  42. Festuccia, N. et al. Esrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells. Cell Stem Cell 11, 477–490 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Silva, J. & Smith, A. Capturing pluripotency. Cell 132, 532–536 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, J. et al. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156, 1274–1285 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pan, X. et al. Site-specific disruption of the Oct4–Sox2 interaction reveals coordinated mesendodermal differentiation and the epithelial–mesenchymal transition. J. Biol. Chem. 291, 18353–18369 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jerabek, S., Merino, F., Scholer, H. R. & Cojocaru, V. OCT4: dynamic DNA binding pioneers stem cell pluripotency. Biochim. Biophys. Acta 1839, 138–154 (2014).

    CAS  PubMed  Google Scholar 

  47. Jauch, R. et al. Conversion of Sox17 into a pluripotency reprogramming factor by reengineering its association with Oct4 on DNA. Stem Cells 29, 940–951 (2011).

    CAS  PubMed  Google Scholar 

  48. Tapia, N. et al. Dissecting the role of distinct OCT4–SOX2 heterodimer configurations in pluripotency. Sci. Rep. 5, 13533 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38, 431–440 (2006).

    CAS  PubMed  Google Scholar 

  50. Galonska, C., Ziller, M. J., Karnik, R. & Meissner, A. Ground state conditions induce rapid reorganization of core pluripotency factor binding before global epigenetic reprogramming. Cell Stem Cell 17, 462–470 (2015). This paper demonstrates global retargeting of OSN binding and remodelling of the enhancer landscape during the transition between pluripotency states.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42, 631–634 (2010).

    CAS  PubMed  Google Scholar 

  52. Fort, A. et al. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat. Genet. 46, 558–566 (2014).

    CAS  PubMed  Google Scholar 

  53. Schmidt, D. et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148, 335–348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kunath, T. et al. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134, 2895–2902 (2007).

    CAS  PubMed  Google Scholar 

  55. Yuan, H., Corbi, N., Basilico, C. & Dailey, L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 9, 2635–2645 (1995).

    CAS  PubMed  Google Scholar 

  56. Tee, W. W., Shen, S. S., Oksuz, O., Narendra, V. & Reinberg, D. Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs. Cell 156, 678–690 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Niwa, H., Ogawa, K., Shimosato, D. & Adachi, K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460, 118–122 (2009).

    CAS  PubMed  Google Scholar 

  59. Martello, G., Bertone, P. & Smith, A. Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor. EMBO J. 32, 2561–2574 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ye, S., Li, P., Tong, C. & Ying, Q. L. Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1. EMBO J. 32, 2548–2560 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, C. Y. et al. Bcl3 bridges LIF–STAT3 to Oct4 signaling in the maintenance of naive pluripotency. Stem Cells 33, 3468–3480 (2015).

    CAS  PubMed  Google Scholar 

  62. Ying, Q. L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292 (2003).

    CAS  PubMed  Google Scholar 

  63. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008). This is the original report of the 2i condition and ground-state pluripotency.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Boroviak, T., Loos, R., Bertone, P., Smith, A. & Nichols, J. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat. Cell Biol. 16, 516–528 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yeo, J. C. et al. Klf2 is an essential factor that sustains ground state pluripotency. Cell Stem Cell 14, 864–872 (2014).

    CAS  PubMed  Google Scholar 

  67. Qiu, D. et al. Klf2 and Tfcp2l1, two Wnt/β-catenin targets, act synergistically to induce and maintain naive pluripotency. Stem Cell Rep. 5, 314–322 (2015).

    CAS  Google Scholar 

  68. Kim, S. H. et al. ERK1 phosphorylates Nanog to regulate protein stability and stem cell self-renewal. Stem Cell Res. 13, 1–11 (2014).

    CAS  PubMed  Google Scholar 

  69. Chen, H. et al. Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 112, E5936–E5943 (2015). This study challenges the idea that ERK signalling is dispensable for naive pluripotency by showing that ESCs cannot be maintained following double knockout of Erk1 and Erk2.

    CAS  PubMed  Google Scholar 

  70. Cole, M. F., Johnstone, S. E., Newman, J. J., Kagey, M. H. & Young, R. A. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev. 22, 746–755 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Martello, G. et al. Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell 11, 491–504 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Fazzio, T. G., Huff, J. T. & Panning, B. An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell 134, 162–174 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ding, L. et al. Systems analyses reveal shared and diverse attributes of Oct4 regulation in pluripotent cells. Cell Syst. 1, 141–151 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu, G. et al. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev. 23, 837–848 (2009). This paper describes a screen that discovered a large number of new genes in the PGRN and a new PGRN module involving CNOT3, TRIM28 and c-MYC.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, M., Liu, G. H. & Izpisua Belmonte, J. C. Navigating the epigenetic landscape of pluripotent stem cells. Nat. Rev. Mol. Cell Biol. 13, 524–535 (2012).

    CAS  PubMed  Google Scholar 

  77. Gorkin, D. U., Leung, D. & Ren, B. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14, 762–775 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wei, Z. et al. Klf4 organizes long-range chromosomal interactions with the Oct4 locus in reprogramming and pluripotency. Cell Stem Cell 13, 36–47 (2013).

    CAS  PubMed  Google Scholar 

  79. Zhang, H. et al. Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming. Cell Stem Cell 13, 30–35 (2013).

    CAS  PubMed  Google Scholar 

  80. Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013). References 78–80 show that pluripotency-associated genes regulate 3D genome organization, which in turn influences their own expression and cell fate determination.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rowe, H. M. et al. TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. Genome Res. 23, 452–461 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G. & Rauscher, F. J. 3rd. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16, 919–932 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cheng, B., Ren, X. & Kerppola, T. K. KAP1 represses differentiation-inducible genes in embryonic stem cells through cooperative binding with PRC1 and derepresses pluripotency-associated genes. Mol. Cell. Biol. 34, 2075–2091 (2014).

    PubMed  PubMed Central  Google Scholar 

  84. Sun, C. et al. Dax1 binds to Oct3/4 and inhibits its transcriptional activity in embryonic stem cells. Mol. Cell. Biol. 29, 4574–4583 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Fujii, S. et al. Nr0b1 is a negative regulator of Zscan4c in mouse embryonic stem cells. Sci. Rep. 5, 9146 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Zhang, J. et al. Dax1 and Nanog act in parallel to stabilize mouse embryonic stem cells and induced pluripotency. Nat. Commun. 5, 5042 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ding, J. et al. Tex10 coordinates epigenetic control of super-enhancer activity in pluripotency and reprogramming. Cell Stem Cell 16, 653–668 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Leitch, H. G. et al. Naive pluripotency is associated with global DNA hypomethylation. Nat. Struct. Mol. Biol. 20, 311–316 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yamaji, M. et al. PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 12, 368–382 (2013).

    CAS  PubMed  Google Scholar 

  90. Tu, S. et al. Co-repressor CBFA2T2 regulates pluripotency and germline development. Nature 534, 387–390 (2016).

    PubMed  PubMed Central  Google Scholar 

  91. Tiscornia, G. & Izpisua Belmonte, J. C. MicroRNAs in embryonic stem cell function and fate. Genes Dev. 24, 2732–2741 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Gangaraju, V. K. & Lin, H. MicroRNAs: key regulators of stem cells. Nat. Rev. Mol. Cell Biol. 10, 116–125 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Houbaviy, H. B., Murray, M. F. & Sharp, P. A. Embryonic stem cell-specific microRNAs. Dev. Cell 5, 351–358 (2003).

    CAS  PubMed  Google Scholar 

  94. Melton, C., Judson, R. L. & Blelloch, R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463, 621–626 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Li, M. & Izpisua Belmonte, J. C. Roles for noncoding RNAs in cell-fate determination and regeneration. Nat. Struct. Mol. Biol. 22, 2–4 (2015).

    CAS  PubMed  Google Scholar 

  96. Gu, K. L. et al. Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency. Cell Res. 26, 350–366 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sheik Mohamed, J., Gaughwin, P. M., Lim, B., Robson, P. & Lipovich, L. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA 16, 324–337 (2010).

    PubMed  PubMed Central  Google Scholar 

  98. Loewer, S. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 42, 1113–1117 (2010). References 97 and 98 highlight the roles of lncRNAs in modulating the PGRN.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, Y. et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev. Cell 25, 69–80 (2013).

    CAS  PubMed  Google Scholar 

  100. Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J. A. & Kosik, K. S. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137, 647–658 (2009).

    CAS  PubMed  Google Scholar 

  101. Santoni, F. A., Guerra, J. & Luban, J. HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology 9, 111 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lu, X. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 21, 423–425 (2014).

    CAS  PubMed  Google Scholar 

  103. Wang, J. et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516, 405–409 (2014).

    CAS  PubMed  Google Scholar 

  104. Salomonis, N. et al. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc. Natl Acad. Sci. USA 107, 10514–10519 (2010).

    CAS  PubMed  Google Scholar 

  105. Gabut, M. et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 147, 132–146 (2011).

    CAS  PubMed  Google Scholar 

  106. Das, S., Jena, S. & Levasseur, D. N. Alternative splicing produces Nanog protein variants with different capacities for self-renewal and pluripotency in embryonic stem cells. J. Biol. Chem. 286, 42690–42703 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lu, Y. et al. Alternative splicing of MBD2 supports self-renewal in human pluripotent stem cells. Cell Stem Cell 15, 92–101 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Han, H. et al. MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature 498, 241–245 (2013). References 107 and 108 show the roles of alternative splicing in regulating pluripotency and self-renewal.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Jia, G., Fu, Y. & He, C. Reversible RNA adenosine methylation in biological regulation. Trends Genet. 29, 108–115 (2013).

    CAS  PubMed  Google Scholar 

  110. Batista, P. J. et al. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15, 707–719 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, Y. et al. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 16, 191–198 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Morgani, S. M. et al. Totipotent embryonic stem cells arise in ground-state culture conditions. Cell Rep. 3, 1945–1957 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Wu, J. & Izpisua Belmonte, J. C. Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17, 509–525 (2015).

    CAS  PubMed  Google Scholar 

  115. Tonge, P. D. et al. Divergent reprogramming routes lead to alternative stem-cell states. Nature 516, 192–197 (2014).

    CAS  PubMed  Google Scholar 

  116. Weinberger, L., Ayyash, M., Novershtern, N. & Hanna, J. H. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. 17, 155–169 (2016).

    CAS  PubMed  Google Scholar 

  117. Ficz, G. et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 13, 351–359 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. von Meyenn, F. et al. Impairment of DNA methylation maintenance is the main cause of global demethylation in naive embryonic stem cells. Mol. Cell 62, 848–861 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Murakami, K. et al. NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers. Nature 529, 403–407 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Factor, D. C. et al. Epigenomic comparison reveals activation of “seed” enhancers during transition from naive to primed pluripotency. Cell Stem Cell 14, 854–863 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Buecker, C. et al. Reorganization of enhancer patterns in transition from naive to primed pluripotency. Cell Stem Cell 14, 838–853 (2014). References 120 and 121 demonstrate the global retargeting of OSN binding and remodelling of the enhancer landscape during the transition between pluripotency states.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang, H. et al. MLL1 inhibition reprograms epiblast stem cells to naive pluripotency. Cell Stem Cell 18, 481–494 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Li, M., Suzuki, K., Kim, N. Y., Liu, G. H. & Izpisua Belmonte, J. C. A cut above the rest: targeted genome editing technologies in human pluripotent stem cells. J. Biol. Chem. 289, 4594–4599 (2014).

    CAS  PubMed  Google Scholar 

  124. Suzuki, K. et al. Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell 15, 31–36 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, M. et al. Efficient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs. Cell Res. 21, 1740–1744 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, M. & Izpisua Belmonte, J. C. Looking to the future following 10 years of induced pluripotent stem cell technologies. Nat. Protoc. 11, 1579–1585 (2016).

    CAS  PubMed  Google Scholar 

  127. Goolam, M. et al. Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos. Cell 165, 61–74 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kolodziejczyk, A. A. et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17, 471–485 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Angermueller, C. et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods 13, 229–232 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Guo, G. et al. Serum-based culture conditions provoke gene expression variability in mouse embryonic stem cells as revealed by single-cell analysis. Cell Rep. 14, 956–965 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. de Wit, E. et al. The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature 501, 227–231 (2013).

    CAS  PubMed  Google Scholar 

  132. Apostolou, E. et al. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell 12, 699–712 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to the colleagues whose work is not covered in this article because of space constraints. The authors would like to thank D. O'Keefe and M. Schwarz for critical reading and generous help during the preparation of the manuscript. Work in the laboratory of J.C.I.B. is supported by the G. Harold and Leila Y. Mathers Charitable Foundation, The Leona M. and Harry B. Helmsley Charitable Trust (grant 2012-PG-MED002), the Moxie Foundation, Fundacion Dr. Pedro Guillen and the Universidad Católica San Antonio de Murcia (UCAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Izpisua Belmonte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Inner cell mass

(ICM). A small cluster of cells inside the early embryo (that is, the blastocyst). These cells give rise to all the tissues of the future embryo but not to extra-embryonic tissues (for example, the placenta). The ICM may be isolated to generate embryonic stem cells.

Trophectoderm

The outer cell layer of a blastocyst. It is formed from the first specialized lineage of cells and gives rise to extra-embryonic tissues.

Mesendoderm

A layer of cells that are formed during early gastrulation, and are destined to become mesoderm and endoderm.

Ectoderm

The outermost of the three germ layers that are formed during gastrulation of the early embryo. Ectoderm-derived tissues include the nervous system, sensory organs and the skin.

Stemness genes

Genes that constitute the stem cell-specific gene expression programme.

Epithelial–mesenchymal transition

(EMT). A process in which cells of an epithelial layer lose their polarity and cell–cell adhesion, and become disorganized migratory mesenchymal cells. EMT is an integral part of normal developmental, wound healing and cancer development.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Belmonte, J. Ground rules of the pluripotency gene regulatory network. Nat Rev Genet 18, 180–191 (2017). https://doi.org/10.1038/nrg.2016.156

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing