Skip to main content

Advertisement

Log in

Rejection versus escape: the tumor MHC dilemma

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Most tumor cells derive from MHC-I-positive normal counterparts and remain positive at early stages of tumor development. T lymphocytes can infiltrate tumor tissue, recognize and destroy MHC class I (MHC-I)-positive cancer cells (“permissive” phase I). Later, MHC-I-negative tumor cell variants resistant to T-cell killing emerge. During this process, tumors first acquire a heterogeneous MHC-I expression pattern and finally become uniformly MHC-I-negative. This stage (phase II) represents a “non-permissive” encapsulated structure with tumor nodes surrounded by fibrous tissue containing different elements including leukocytes, macrophages, fibroblasts, etc. Molecular mechanisms responsible for total or partial MHC-I downregulation play a crucial role in determining and predicting the antigen-presenting capacity of cancer cells. MHC-I downregulation caused by reversible (“soft”) lesions can be upregulated by TH1-type cytokines released into the tumor microenvironment in response to different types of immunotherapy. In contrast, when the molecular mechanism of the tumor MHC-I loss is irreversible (“hard”) due to a genetic defect in the gene/s coding for MHC-I heavy chains (chromosome 6) or beta-2-microglobulin (B2M) (chromosome 15), malignant cells are unable to upregulate MHC-I, remain undetectable by cytotoxic T-cells, and continue to grow and metastasize. Based on the tumor MHC-I molecular analysis, it might be possible to define MHC-I phenotypes present in cancer patients in order to distinguish between non-responders, partial/short-term responders, and likely durable responders. This highlights the need for designing strategies to enhance tumor MHC-I expression that would allow CTL-mediated tumor rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APM:

Antigen presentation machinery

B2M:

Beta-2-microglobulin

BCG:

Bacille Calmette–Guerin

CTL:

Cytotoxic T lymphocyte

CTLA4:

Cytolytic T lymphocyte-associated antigen 4

DNA:

Deoxyribonucleic acid

FACS:

Fluorescence-activated cell sorter/sorting

FITC:

Fluorescein isothiocyanate

HLA:

Human leukocyte antigen

IFN:

Interferon

IL:

Interleukin

LOH:

Loss of heterozygocity

mAb:

Monoclonal antibodies

MDSC:

Myeloid-derived suppressor cell

MFI:

Mean fluorescence intensity

MHC:

Major histocompatibility complex

PCR:

Polymerase chain reaction

TH1:

T helper 1

TIL:

Tumor infiltrating lymphocyte

References

  1. Gorer PA (1937) The genetic and antigenic basis of tumor transplantation. J Pathol Bacteriol 44:691–697. doi:10.1002/path.1700440313

    Article  Google Scholar 

  2. Foley EJ (1953) Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res 13:835–837

    CAS  PubMed  Google Scholar 

  3. Baldwin RW (1955) Immunity to methylcholanthrene-induced tumors in inbred rats following atrophy and regression of implanted tumors. Br J Cancer 9:652–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Prehn RT, Main JM (1957) Immunity to methylcholanthrene-induce sarcomas. J Natl Cancer Inst 18:769–778

    CAS  PubMed  Google Scholar 

  5. Klein G, Sjogren HO, Klein E, Hellstrom KE (1960) Demonstration of resistance against methylcholanthreneinduced sarcomas in the primary autochthonous host. Cancer Res 20:1561–1572

    CAS  PubMed  Google Scholar 

  6. Basombrio MA (1970) Search for common antigenicities among twenty-five sarcomas induced by methylcholanthrene. Cancer Res 30:2458–2462

    CAS  PubMed  Google Scholar 

  7. Boon T, Coulie P, Van Den Eynde BJ, Van Der Bruggen P (2006) Human T cell responses against melanoma. Annu Rev Immunol 24:175–208

    Article  CAS  PubMed  Google Scholar 

  8. Townsend AR, Gotch FM, Davey J (1985) Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell 42(2):457–467

    Article  CAS  PubMed  Google Scholar 

  9. Rosenberg SA, Lotze MT, Muul LM et al (1987) A progress report on the treatment of 157 patients with advance cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 316(15):889–897

    Article  CAS  PubMed  Google Scholar 

  10. Tarhini AA, Gogas H, Kirkwood JM (2012) IFN-α in the treatment of melanoma. J Immunol 189(8):3789–3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morales A, Eidinger D, Bruce AW (1976) Intracavitary Bacillus Calmette Guerin in the treatment of superficial bladder tumors. J Urol 116(2):180–183

    CAS  PubMed  Google Scholar 

  12. Andersen R, Donia M, Ellebaek E et al (2016) Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumour-infiltrating lymphocytes and an attenuated IL-2 regimen. Clin Cancer Res 22(15):3734–3745

    Article  CAS  PubMed  Google Scholar 

  13. Marchand M, Van Baren N, Weynan P et al (1999) Tumour regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer 80:219–230

    Article  CAS  PubMed  Google Scholar 

  14. Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, Gajewski TF (2014) Mechanism of tumor rejection with doublets of CTLA4, PD-1/PD-L1 or IDO blockade involves restored IL-2 production and proliferation of CD8+ T cells directly within the tumor microenvironment. J Immunother Cancer. doi:10.1186/2051-1426-2-3

    PubMed  Google Scholar 

  15. Honeychurch J, Cheadle EJ, Dovedi SJ, Illidge TM (2015) Immunoregulatory antibodies for the treatment of cancer. Expert Opin Biol Ther 15:787–801

    Article  CAS  PubMed  Google Scholar 

  16. Ladanyi A, Somlai B, Gilde K, Fejös Z, Gaudi I, Tímár J (2004) T-cell activation marker expression on tumor-infiltrating lymphocytes as prognostic factor in cutaneous malignant melanoma. Clin Cancer Res 10(2):521–530

    Article  CAS  PubMed  Google Scholar 

  17. Schumacher K, Haensch W, Röefzaad C, Schlag PM (2001) Prognostic significance of activated CD8+ T cell infiltrations within esophageal carcinomas. Cancer Res 61:3932–3936

    CAS  PubMed  Google Scholar 

  18. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H et al (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58:3491–3494

    CAS  PubMed  Google Scholar 

  19. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  CAS  PubMed  Google Scholar 

  20. Bodmer W, Browning MJ, Krausa P, Rowan A, Bicknell DC, Bodmer J (1993) Tumour escape from immune response by variation in HLA expression and other mechanism. Ann N Y Acad Sci 690:42–49

    Article  CAS  PubMed  Google Scholar 

  21. Garrido F, Cabrera T, Concha A, Glew S, Ruiz-Cabello F, Stern PL (1993) Natural history of HLA expression during tumour development. Immunol Today 14:491–499

    Article  CAS  PubMed  Google Scholar 

  22. Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M, Stern PL (1997) Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 18:89–95

    Article  CAS  PubMed  Google Scholar 

  23. Marincola FM, Jafee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273

    Article  CAS  PubMed  Google Scholar 

  24. Garrido F, Algarra I (2001) MHC antigens and tumor escape from immune surveillance. Adv Cancer Res 83:117–158

    Article  CAS  PubMed  Google Scholar 

  25. Seliger B, Cabrera T, Garrido F, Ferrone S (2002) HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 12:3–13

    Article  CAS  PubMed  Google Scholar 

  26. Koopman LA, Corver WE, Van Der Slik AR, Giphart MJ, Fleuren GJ (2000) Multiple genetic alterations at chromosome 6p cause frequent and heterogeneous HLA class I antigen loss in cervical cancer. J Exp Med 191:961–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ljunggren HG, Kärre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11(7):237–244

    Article  CAS  PubMed  Google Scholar 

  28. Stojanovic A, Correia MP, Cerwenka A (2013) Shaping of NK cell responses by the tumor microenvironment. Cancer Microenviron 6(2):135–146

    Article  CAS  PubMed  Google Scholar 

  29. Cabrera T, Lopez-Nevot MA, Gaforio JJ, Ruiz-Cabello F, Garrido F (2003) Analysis of HLA expression in human tumor tissues. Cancer Immunol Immunother 52:1–9

    CAS  PubMed  Google Scholar 

  30. Garcia-Lora A, Algarra I, Gaforio JJ, Ruiz-Cabello F, Garrido F (2001) Immunoselection by T lymphocytes generates repeated MHC class I-deficient metastatic tumor variants. Int J Cancer 91:109–119

    Article  CAS  PubMed  Google Scholar 

  31. Garcia-Lora A, Martinez M, Algarra I, Gaforio JJ, Garrido F (2003) MHC class I-deficient metastatic tumor variants immunoselected by T lymphocytes originate from the coordinated downregulation of APM components. Int J Cancer 106:521–527

    Article  CAS  PubMed  Google Scholar 

  32. del Campo AB, Kyte JA, Carretero J, Zinchencko S, Méndez R, González-Aseguinolaza G, RuizCabello F, Aamdal S, Gaudernack G, Garrido F, Aptsiauri N (2014) Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int J Cancer 134(1):102–113

    Article  PubMed  Google Scholar 

  33. Boon T, Coulie P, Van Den Eynde BJ, Van Der Bruggen P (2006) Human T cell responses against melanoma. Ann Rev Immunol 24:175–208

    Article  CAS  Google Scholar 

  34. Romero P, Coulie P (2014) Adaptive T cell immunity and tumor antigen recognition. In: Rees R (ed) Tumor Immunology and Immunotherapy. Oxford University Press, Oxford, UK, pp 1–14

    Google Scholar 

  35. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Shadendorf D (1998) Vaccination of melanoma patients with peptide or tumor lysate-pulsed dendritic cells. Nat Med 4(3):328–332

    Article  CAS  PubMed  Google Scholar 

  36. Herbst RS, Baas P, Kim DW, Felip E et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387(10027):1540–1550. doi:10.1016/S0140-6736(15)01281-7

    Article  CAS  PubMed  Google Scholar 

  37. Carretero R, Romero JM, Ruiz-Cabello F, Maleno I, Rodriguez F, Camacho FM, Real LM, Garrido F, Cabrera T (2008) Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics 60:439–447

    Article  CAS  PubMed  Google Scholar 

  38. Carretero R, Wang E, Rodriguez AI, Reinboth J, Ascierto ML, Engle AM, Liu H, Camacho F, Marincola FM, Garrido F, Cabrera T (2012) Regression of melanoma metastases after immunotherapy is associated with activation of antigen presentation and interferon-mediated rejection genes. Int J Cancer 131(2):387–395

    Article  CAS  PubMed  Google Scholar 

  39. Ryschich E, Notzel T, Hinz U, Autschbach F, Ferguson J, Simon I, Weitz J, Frohlich B, Klar E, Buchler M, Schmidt J (2005) Control of T cell mediated immune response by HLA class I in human pancreatic carcinoma. Clin Can Res 11:498–504

    CAS  Google Scholar 

  40. Kikuchi E, Yamazaki K, Torigoe T, Cho Y, Miyamoto M, Oizumi S, Hommura F, Dosaka-Akita H, Nishimura M (2007) HLA class I antigen expression is associated with a favorable prognosis in early stage non-small cell lung cancer. Cancer Sci 98:1424–1430

    Article  CAS  PubMed  Google Scholar 

  41. Garrido F, Cabrera T, Accola RS, Bensa JC, Bodmer W et al (1997) HLA and Cancer. In: Charron D (ed) HLA: genetic diversity of HLA. Functional and medical implications. EDK, Paris, pp 445–452

    Google Scholar 

  42. Mendez R, Ruiz-Cabello F, Rodriguez T, Del Campo A, Paschen A, Schadendorf D, Garrido F (2007) Identification of different tumor escape mechanisms in several metastases from a melanoma patient undergoing immunotherapy. Cancer Immunol Immunother 56(1):88–94

    Article  PubMed  Google Scholar 

  43. Tikidzhieva A, Benner A, Michel S, Formentini A, Link KH, Dippold W, von Knebel Doeberitz M, Kornmann M, Kloor M (2012) Microsatellite instability and Beta2-Microglobulin mutations as prognostic markers in colon cancer: results of the FOGT-4 trial. Br J Cancer 106(6):1239–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garrido F, Romero I, Aptsiauri N, Garcia-Lora AM (2016) Generation of MHC class I diversity in primary tumors and selection of the malignant phenotype. Int J Cancer 138:271–280

    Article  CAS  PubMed  Google Scholar 

  45. Perea F, Bernal M, Sánchez-Palencia A, Carretero J, Torres C, Bayarri C, Gómez-Morales M, Garrido F, Ruiz-Cabello F (2017) The absence of HLA class I expression in non-small cell lung cancer correlates with the tumor tissue structure and the pattern of T cell infiltration. Int J Cancer 140(4):888–899

    Article  CAS  PubMed  Google Scholar 

  46. Mukhopadhyay S, Gal AA (2010) Granulomatous lung disease: an approach to the differential diagnosis. Arch Pathol Lab Med 134(5):667–690

    PubMed  Google Scholar 

  47. Ramakrishnan L (2012) Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 12:352–366

    CAS  PubMed  Google Scholar 

  48. ThorStraten P, Garrido F (2016) Targetless T cells in cancer immunotherapy. J Immunother Cancer 4:23. doi:10.1186/s40425-016-0127-z

    Article  Google Scholar 

  49. Bernal M, Ruiz-Cabello F, Concha A, Paschen A, Garrido F (2012) Implication of the β2 microglobulin gene in the generation of tumor escape phenotypes. Cancer Immunol Immunother 61(9):1359–1371

    Article  PubMed  Google Scholar 

  50. Garrido F, Cabrera T, Aptsiauri N (2010) “Hard” and “Soft” lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy. Int J Cancer 127(2):249–256

    CAS  PubMed  Google Scholar 

  51. Maleno I, Cabrera CM, Cabrera T, Paco L, Lopez-Nevot MA, Collado A, Ferron A, Garrido F (2004) Distribution of HLA class I altered phenotypes in colorectal carcinomas: high frequency of HLA haplotype loss associated with loss of heterozygosity in chromosome region 6p21. Immunogenetics 56:244–253

    Article  CAS  PubMed  Google Scholar 

  52. Jimenez P, Canton J, Collado A, Cabrera T, Serrano A, Real LM, Garcia A, Ruiz-Cabello F, Garrido F (1999) Chromosome loss is the most frequent mechanism contributing to HLA haplotype loss in human tumors. Int J Cancer 83:91–97

    Article  CAS  PubMed  Google Scholar 

  53. Jimenez P, Cabrera T, Mendez R, Esparza C, Cozar JM, Tallada M, Lopez-Nevot MA, Ruiz-Cabello F, Garrido F (2001) A nucleotide insertion in exon 4 is responsible for the absence of expression of an HLA-A*0301 allele in a prostate carcinoma cell line. Immunogenetics 53:606–610

    Article  CAS  PubMed  Google Scholar 

  54. Serrano A, Brady CS, Jimenez P, Duggan-Keen MF, Mendez R, Stern P, Garrido F, Ruiz-Cabello F (2000) A mutation determining the loss of HLA-A2 antigen expression in a cervical carcinoma reveals novel splicing of human MHC class I classical transcripts in both tumoral and normal cells. Immunogenetics 51:1047–1052

    Article  CAS  PubMed  Google Scholar 

  55. Browning M, Petronzelli F, Bicknell D, Krausa P, Rowan A, Tonks S, Murray N, Bodmer J, Bodmer W (1996) Mechanisms of loss of HLA class I expression on colorectal tumour cells. Tissue Antigens 47(5):364–371

    Article  CAS  PubMed  Google Scholar 

  56. Seliger B, Ruiz-Cabello F, Garrido F (2008) IFN inducibility of major histocompatibility antigens in tumors. Adv Cancer Res 101:249–276

    Article  CAS  PubMed  Google Scholar 

  57. Garrido F, Aptsiauri N, Doordjuijn E, Garcia-Lora A, van Hall T (2016) The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol 39:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Del Campo AB, Carretero J, Muñoz JA, Zinchenko S, Ruiz-Cabello F, González-Aseguinolaza G, Garrido F, Aptsiauri N (2014) Adenovirus expressing β2-microglobulin recovers HLA class I expression and antitumor immunity by increasing T-cell recognition. Cancer Gene Ther 21(8):317–332

    Article  PubMed  Google Scholar 

  59. Del Campo A, Aptsiauri N, Mendez R, Zinchenko S, Vales A, Paschen A, Ward S, Ruiz-Cabello F, González- Aseguinolaza G, Garrido F (2009) Efficient recovery of HLA class I expression in human tumor cells after beta2-microglobulin gene transfer using adenoviral vector: implications for cancer immunotherapy. Scand J Immunol 70:125–135

    Article  PubMed  Google Scholar 

  60. Carretero R, Cabrera T, Sáenz-López P, Maleno I, Aptsiauri N, Cózar JM, Garrido F (2011) Bacillus Calmette-Guerin immunotherapy of bladder cancer induces selection of human leukocyte antigen class I-deficient tumor cells. Int J Cancer 129(4):839–846

    Article  CAS  PubMed  Google Scholar 

  61. Corbiere V, Chapiro J, Stroobant V, Ma W, Lurquin C (2011) Antigen spreading contributes to MAGE vaccination-induced regression of melanoma metastases. Cancer Res 71:1253–1262

    Article  CAS  PubMed  Google Scholar 

  62. Robert L, Tsoi J, Wang X, Emerson R, Homet B, Chodon T, Mok S, Huang RR, Cochran A, Comin-Anduix B, Koya R, Graeber T, Robins H, Ribas A (2014) CTLA4 blockade broadens the peripheral T cell receptor repertoire. Clin Cancer Res 20(9):2424–2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rodriguez T, Mendez R, Del Campo A, Jimenez P, Aptsiauri N, Garrido F, Ruiz-Cabello F (2007) Distinct mechanisms of loss of IFN-gamma mediated HLA class I inducibility in two melanoma cell lines. BMC Cancer 7:34

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kloor M, Becker C, Benner A, Woerner S, Gebert J, Ferrone S, Doeberitz MK (2005) Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res 65:6418–6424

    Article  CAS  PubMed  Google Scholar 

  65. Angell TE, Lechner MG, Jang JK, LoPresti JS, Epstein AL (2014) MHC class I loss is a frequent mechanism of immune escape in papillary thyroid cancer that is reversed by interferon and selumetinib treatment in vitro. Clin Cancer Res 20(23):6034–6044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zaretsky JM, Angel Garcia-Diaz BS, Shin DS, Escuin-Ordinas H, Hugo W et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829

    Article  CAS  PubMed  Google Scholar 

  67. Aptsiauri N, Cabrera T, Mendez R, Garcia-Lora A, Ruiz-Cabello F, Garrido F (2007) Role of altered expression of HLA class I molecules in cancer progression. Adv Exp Med Biol 601:123–131

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Teresa Rodriguez for helping in the design of the figures, Dr. Monica Bernal and Francisco Perea for providing some immunohistological images and Carlos Bandeira for designing Fig. 5.

Grant support

This work was supported by Grants from the Instituto de Salud Carlos III co-financed by FEDER funds (European Union) (PI 11/1022, PI 11/1386, PI14/1978, PI16/00752‚ RETIC RD 06/020, RD09/0076/00165, PT13/0010/0039) and Junta de Andalucía in Spain (Group CTS-143, PI09/0382).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Garrido.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

This paper is a Focussed Research Review based on a presentation given at the Fifteenth International Conference on Progress in Vaccination against Cancer (PIVAC 15), held in Tübingen, Germany, 6th – 8th October, 2015. It is part of a Cancer Immunology, Immunotherapy series of Focussed Research Reviews and meeting report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido, F., Ruiz-Cabello, F. & Aptsiauri, N. Rejection versus escape: the tumor MHC dilemma. Cancer Immunol Immunother 66, 259–271 (2017). https://doi.org/10.1007/s00262-016-1947-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1947-x

Keywords

Navigation