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Goals

e Reinforcement learning has revolutionized our
understanding of learning in the brain in the last
20 years

¢ Not many ML researchers know this!

1. Take pride

2. Ask: what can neuroscience do for me?

e \\hy are you here?

¢ Tolearn about learning in animals and humans
e To find out the latest about how the brain does RL

¢ To find out how understanding learning in the brain can
help RL research




If you are here for other

reasons...
learn what is RL
. learn about the
and how to do It o
brain in general
read emaill
take a well-
needed nap

smirk at the
shoddy state of
neuroscience
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Model free and model based RL in the brain
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Why do we have a brain?

because computers were not yet inven

to behave
example: sea squirt = ¢
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larval stage: primitive brain & eye, swims

around, attaches to a rock

adult stage: sits. digests brain.

Credits: Daniel Wolpert
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the brain in very coarse grain

world
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what do we know about the brain®

¢ Anatomy: we know a lot about what is where and [more or less]

which area is connected to which (But unfortunately names follow
structure and not function; be careful of generalizations, e.g. neurons in motor

cortex can respond to color)
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what do we know about the brain®

e Anatomy: we know a lot about what is where and [more or less]

which area is connected to which (But unfortunately names follow
structure and not function; be careful of generalizations, e.g. neurons in motor
cortex can respond to color)

¢ 5Single neurons: we know quite a bit about how they work (but still don’t
know much about how their 3D structure affects function)

Basic Neuron Design
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Axon
Hillock

Myelin
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what do we know about the brain®

e Anatomy: we know a lot about what is where and [more or less]

which area is connected to which (But unfortunately names follow

structure and not function; be careful of generalizations, e.g. neurons in motor
cortex can respond to color)

¢ 5Single neurons: we know quite a bit about how they work (but still don’t
know much about how their 3D structure affects function)

e Networks of neurons: we have some ideas but in general are still in
the dark

® [ earning: we know a lot of facts (LTP, LTD, STDP] [not clear which, if any

are relevant; relationship between synaptic learning rules and computation
essentially unknown)

¢ [Function: we have pretty coarse grain knowledge of what different

brain areas do [(mainly sensory and mator; unclear about higher cognitive
areas; much emphasis on representation rather than computation]
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osummary so far...

e \/\/e have a lot of facts about the brain

e But.. we still don’t understand that much
about how It works

¢ (can ML help??]

11
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what do neuroscientists do all day?

figure out how the brain generates behavior

bran behavior

13




do we need so many neuroscientists

for one simple question?

e (Old idea:
structure — function

e The brainis an extremely  fie=Fi+
complex (and messy) it
dynamic biological system Sl

e 10" neurons
communicating through
1074 synapses | i

<
Le—1L5
o

e we don’t stand a chance... e

Credits; Peter Latham 14




IN comes computational
Nneuroscience

(relatively) New |dea:

The brain is a computing device

Computational models can help us talk about

functions of the brain in a precise way

Abstract and formal theory can help us
organize and interpret (concrete) data

15




a framework for
computational neuroscience

David Marr (13945-1380]) proposed three
levels of analysis:

1. the problem [Computational Level]
2. the strategy (Algorithmic Level]

3. how its actually done by networks of neurons
(Implementational Level)

16




the problem we all face In our dally life

optimal decision making

(maximize reward, minimize punishment]
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Why is this hard?

* Reward/punishment may be delayed
 Jutcomes may depend on a series of actions
= "credit assignment problem” (sutton, 1978)

SeHobL IS ReLL
BLUT
T BEATS WORKING

SHOULD YoU GO
TO GRAD SCHOOL?

A WEE TEST

T E
O 0 T ama compusive
NEOROTIC.

[ [0 1 LiXe my masiuaTon)
CRUSHED INTO DUST.

[0 1 ensoy BEING A
PROTESSORS SLAVE,

0 [J nv ioea oF a 5000
TIME (S OSING JARGON
AND CUTING RUTHORITIES.

(O[] 1EESL A DEEP NRED
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IN comes reinforcement
learning

¢ [he problem: optimal decision making
[maximize reward, minimize punishment]

¢ An algorithm: reinforcement learning

¢ Neural implementation: basal ganglia,
dopamine

18




osummary so far...

¢ |dea: study the brain as a computing device

¢ Rather than look at what networks of
neurons In the brain represent, look at

what they compute
¢ \Vhat do animal’s brains compute?

19




Animal Conditioning and RL

¢ two basic types of animal conditioning
(animal learning]

e how do these relate to RL?

|
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ABOUT EVERYTHING.
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1. Pavlovian conditioning:
animals learn predictions

.
.......
-

3 L

lvan Pavlov
(Nobel prize portrait)
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Pavlovian conditioning examples
[conditioned suppression, autoshaping]

Credits: Greg Quirk
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how Is this related to RL"
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model-free learning of values of stimuli through experience;
responding conditioned on (predictive]) value of stimulus

Dayan et al. (2006] - “The Misbehavior of Value and the Discipline of the Will”




Rescorla & Wagner (13972)

The idea: error-driven learning

Change in value is proportional to the difference between
actual and predicted outcome

Two assumptions/hypotheses:
(1] learning is driven by error [formalize notion of surprise)
(2) summations of predictors is linear

24




How do we know that animals use an

error-correcting learning rule?

Phase | Phase |l

% DDD

Blocking
[NB. Also in humans]
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2. Instrumental conditioning:
adding control

Edward
Background: Darwin, attempts to Thorndike
show that animals are intelligent (law of effect)

Thorndike (age 23): submitted
PhD thesis on “Animal intelligence:
an experimental study of the
associative processes in animals”

w
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Tested hungry cats in "puzzle
boxes”

Definition for learning: time to
escape

. . 0! 1 1 1
GGradual learning curves, did not R

. ‘. . , . rials
look like ‘insight’ but rather trial |
and error

W
-
o

=

200 |

100 |

Time required to escape (sec)

26




Example: Free operant
conditioning (Skinner})
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how Is this related to RL"

Y [ HAVE RESPONSIBLLITY
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animals can learn an arbitrary policy to obtain
rewards (and avoid punishments]




summary so far...

e The world presents animals/humans with a
huge reinforcement learning problem (or
many such small problems]

¢ Optimal learning and behavior depend on
prediction and control

e How can the brain realize these? FROM NDON,
Can RL help us understand the  TeroicTeD success

"7 ONOT YOUR PAST
PERTORMANCE .

brain’s computations?

29
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\VWhat Is dopamine and why do
we care about It?

Dorsal Striatum (Caudate, Putamen)
Prefrontal Cortex

//////

,,,,,,,

Nucleus Accumbens |
o e
(ventral striatum) /

SN
Lo

' ‘Substantia Nigra
Ventral Tegmental Area

Parkinson’s Disease
— Motor control / initiation?

Drug addiction, gambling,
Natural rewards

— Reward pathway?
— Learning?

Also involved In:

* \Working memory
Novel situations
ADHD

Schizophrenia

31




role of dopamine: many hypotheses

e Anhedonia hypothesis

e Prediction error hypothesis

e Salience/attention

e (Uncertainty]

® |[ncentive salience

e Cost/benefit computation

e Energizing/motivating behavior

32




the anhedonia hypothesis (Wise, '80s)

* Anhedonia = inability to experience positive emotional
states derived from obtaining a desired or biologically
significant stimulus

* Neuroleptics (dopamine antagonists) cause anhedonia
* Dopamine is important for reward-mediated conditioning

Peter Shizgal, Concordia 33




the anhedonia hypothesis (Wise, '80s)

* Anhedonia = inability to experience positive emotional
states derived from obtaining a desired or biologically
significant stimulus

* Neuroleptics (dopamine antagonists) cause anhedonia
* Dopamine is important for reward-mediated conditioning




but...

predictable
reward

omitted
reward

(Schultz et al. '90s) 35
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prediction error hypothesis
of dopamine

learning
Spatial
choice

sk estaishec The idea: Dopamine

[ by encodes a temporal

difference reward

learning . .
prediction error
Instructed
spatial : ,
tack (Montague, Dayan, Barto mid 90's] 0
&)
Qv
©
i)
)
i)
E
learning L%
Delayed g Tobler, et al, 2005 stimulus cn reward
response (@)]
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I X 11
EO 4':'7 5 splkes/sl_
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n 37
Reward ) Onset of conditioned stimuli predicting expected reward value




prediction error hypothesis
. stringent tests

of dopamine

Y

——model prediction
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Bayer & Glimcher (2003) 38




where does dopamine project to?

main target. basal ganglia

VL nucleus of

thalamue

Caudate
nucleus

Putamen

Caudatz
Thal
nucleus Globus pallidus alamus
. (lateral part)
Stratum Subthalamic
Globus pallidus nucleus
Putamen ) (medial part)
Substantia
nigra
== Globus
palidus

! ) = . Sublalanic
Substantia nucleus
niga

39




dopamine and synaptic plasticity

e prediction errors are for learning...

cortical
B afferents

e cortico-striatal synapses show
dopamine-dependent plasticity

* three-factor learning rule: need
presynaptic+postsynaptic+dopamine

AN N
AN N AN Nt

dopamine
afferent

\

striatal
neuron

I

Dopamine

“ Control

Wickens et al, 1996 40




summary so far...

Conditioning can be viewed as prediction learning

* The problem: prediction of future reward
* The algorithm: temporal difference learning

* Neural iImplementation: dopamine dependent learning
In corticostriatal synapses in the basal ganglia

= Precise (normative!) theory for generation of dopamine
firing patterns

= A computational model of learning allows us to look in
the brain for "hidden variables” postulated by the model

41
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3 model-free learning algorithms

Actor/Critic

( learning
SARSA

43




Actor/Critic in the brain?

states/stimuli (s)

Environment

rewards (r)

Environment

]

PPTN, habenula...
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evidence for this?
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short aside: functional magnetic
resonance imaging (fMRI)

e measure BOLD ("blood oxygenation
level dependent”) signal

e oxygenated vs de-oxygenated
hemoglobin have different magnetic

properties

e detected by big superconducting
magnet

|dea:

e Brain is functionally modular

¢ Neural activity uses energy & oxygen
e |Veasure brain usage, not structure

e Spatial resolution: ~3mm 3D “voxels”

e temporal resolution: 5-10 seconds
45




short aside: functional magnetic
resonance imaging (fMRI)
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Back to Actor/Critic:
Evidence from fMRI

rewarding neutral

TN 1

D% 30% 30% B0%

cond 1: instrumental (choose stimuli]) - show preference for
high probability stimulus in rewarding but not neutral trials

cond 2: Pavlovian - only indicate the side the ‘computer’ has
selected (RTs as measure of learning]

why was the experiment designed this way (hint: think of
prediction errors]

O'Doherty et al. 2004 47




Back to Actor/Critic:
Evidence from fMRI

ventral striatum: correlated with prediction error in both conditions
A Pavlovian B Instrumental C Conjunction

Effect size
- o = N w Moo

FiE;cs ’PE_‘ugs FiE‘_cs PE_chs

" R 4
Instrumental task Pavlovian task

Dorsal striatum: prediction error only in instrumental task
A

Instrumental task Pavlovian task 101

S i

IEffectS|ze
D AN O NV DM O OO

h PE;cs IPE_'ucs | PE_cs PE_ucs‘

%{_J %{_/
Instrumental task Pavlovian task

O'Doherty et al. 2004 48




do prediction errors really
influence learning?

This turn Bet:50

I [

Choose This turn Bet:50

\‘ooool

+RT (~500 msec),
up to max 2000 msec

This turn Bet:50

+3000
msec

+1500
msec

Choices on HP Decks

20
18
16
14
12
10

Learners vs Non-Learners

—e&— Leamers (n=17)
- -o- - Non-Learners (n=12)

T T
e
T/J- i
: : —
/L -
-
T . 2N
. ST ¢ . =
, 4 - 8-” ° e
1 2 3 4 5 6 7
Blocks of 20 trials

Schonberg et al. 2007 48




L earners

Non-Learners

do prediction errors really
influence learning®

% Signal Change in High PE

[18 15 15]

E os
0.08 —e—Leamers
o e 0.06 —»— Non-Leamers
e € 0.04
| + 5 002
H ‘ g 0 T I
; @002 1 ¥ 34
' ® 004 T o
A 006 L+ T I
| -0.08
‘ Time (Secs)
F % signal chnage in Negative PE

Time (Secs)

Schonberg et al. 2007 90




summary so far...

e Some evidence for an Actor/Critic architecture in the

brain

e | inks predictions [Critic) to control [Actor) in very

specific way; assumes no ( values

e [Not at all conclusive evidence]

DILBERT SAYS IT™M
PREDICTABLE. AM

© Scott Adams, Inc.JDIst. by UFS, |

I Y
/’ MUST. .. CONTROL

» .8'.
:
¢|( sNEEZE. MUST...NOT ) |3 OMPH!
I PREDICTABLE? | BE...PREDICTABLE. § |[&] @O/ " YESTERDAY
| § k/\u/\__,\v/\_/\/ 2 . I DREW A
| GESUNDHEIT | 3 § Sﬁl?“fﬁg
IN ADVANCE. & H : WOULD LOOK
. ; g % [ LIKE.
o £ j@ £ e
h ) — \ ! § | ¢ —
i ; Hl U : 4

>

C.
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do dopamine prediction errors
at trial onset represent V(S]?

Start

Morris et al. 2005 953




do dopamine prediction errors
at trial onset represent V(S]?

P (left choice) = 0.2

0 400 800
(ms)

P (right choice) = 0.8

400 800
(ms)

Prediction error (dopamine)
Left choice Right choice

V learning I N
Q learning _A_ _A_

SARSA — A\ J\_

Katie Ris

Morris et al. 2005 54




do dopamine prediction errors
at trial onset represent V(S]?

stimulus on
S | forced '
e | O f |
Q . m forced
§ St 0O choice M choice | ~_j¥
= | _
2 |
@ ’. .
[4))
c |
o
& | 2 '
? R? =0.972 |
T . .

0 50 100
Action value

Morris et al. 2005 25




but... another study suggests
otherwise

BLOCK1 odor

/N

Immediate delayed
reward reward

Ny

BLOCK2 odor

/N

delayed iImmediate

reward reward

BLOCK3 odor

/N

small large
reward reward

&

BLOCK4 odor

/N

large small
reward reward

Roesch et al. 2007/ 56




Spikes per s

Spikes per s

121

10

12 ¢

10

but... another study suggests

Forced choice

Odor Odor
on off ~Reward (short)
(B
W Short FR (cue)
Hlong 3 18 *
o 6
2 a
a 2
@ Short Long
RT (ms)
220
190 .
160
130
+ ), S 100
~Rew. omission (long) Short Long

0 1 2 3 4
Time from odor onset (s)

Forced choice

Odor Odor

on off ~Reward

Y Y ov

B Big FR (cue)
& Small

e
NEOOO

*

Spikes per s

Big Small

RT (ms)

Big Small

0 1 2 3 4
Time from odor onset (s)

Spikes per s

otherwise

Free choice

Odor Odor
on off ;Reward (short)

FR (cue)
ns

—
NAEORO

Spikes per s

Short Long

RT (ms)
220 "
190
160
130

A

00
~Rew. omission (long) Short Long

Spikes per s

-1 0 1 2 3 4
Time from odor onset (s)

Free choice
Odor Odor
on off ~Reward
Y Y v
H Big FR (cue)
= Small 2404 s
@
2 6
w
& 2rs
Big Small
RT (ms)
2209
190
160
130
100
Big Small

-1 0 1 2 3 4
Time from odor onset (s)

Differences from

Morris et al. (2003):

* rats not monkeys

* VTA not SNc

* amount of training

* task (representation
of stimuli?]

[notice the messy signal...
due to measurement or is it
that way in the brain?)

Roesch et al. 2007/ 57




osummary so far...

e SARSA or Q-learning? The jury Is still out

¢ \Vhat needs to be done: more experiments

recording from dopamine in tellta

¢ The brain ([dopamine] can inform
does It learn in real time, with rea
real problems?

e tasks

RL: how
noise, In

o8
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do animals only learn action policies?

result:

EAANANNNNN

DHHMMMIMIM

\mﬁ,///////////////
FALNN

MMM ///////// og

training:

r

Even the humble rat can can learn spatial structure, and

use It to plan flexibly

Tolman et al (1946) 60




another test; outcome devaluation

<
1 - Training: =

2 - Pairing with illness: /

o — |

-~ ?
3 - Test: ':g_

[(no rewards)

— &

pPan|eAsp-UoN
payIysun

Hungry

~? = ?
7 -7
~< <

\2 - Motivational shift:

Sated

will animals
work for food
they don't
want?

61




presses per minute

devaluation: results

10 - Leverpress Behavior — n\ondevalued Magazine Behavior
10
1 Devalued o
2 ||
5 - |
- [
51
S | {
o | T
e, L
©
0 @ O
moderate  extensive moderate extensive
training training training training

Animals will sometimes work for food they don't want!
- in daily life: actions become automatic with repetition

Holland (2004), Kilcross & Coutureau (2003]
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devaluation: results from lesions |

O

80

% of final response rate

20
10

70-
60-
50-
10
30-

overtrained rats

B Devalued
[] Valued

n

dorsolateral control
striatum lesion (sham lesion)

—> animals with lesions to
DLS never develop habits
despite extensive training

—> also treatments depleting
dopamine in DLS

—> also inactivations of infra-
imbic PFC after training

Yin et al (2004), Coutureau & Killcross (2003) 63




devaluation: results from lesions Il

SHAM
— 35- ! 35
E 30 - | ‘ 30 -
L 25 25
0 | ' |
@ 20- 8 : * 20
IRE 15 -
— 1 I 1
2 10+ | 10
[0) 1 | 1
> 5 - ! 5 -
— ot - 0
train test

aDMS

35

30*_
25
20
15
10“

5—‘

pDMS

i OU Non-deval.
i OO peval.

6 |

’ ]
train |

test

Yin, Ostlund, Knowlton & Balleine (2003]) 64

0

train i test

esions of the ppDMS cause animals to leverpress
nabitually even with only moderate training

also.. pre-limbic PFC, dorsomedial thalamus])




what does all this mean?

e The same action (leverpressing] can arise from two
psychologically dissociable pathways

1. moderately trained behavior is “goal-directed”. dependent on
outcome representation

2. overtrained behavior is "habitual”: apparently not dependent
on outcome representation

e | esions suggest two parallel systems; the intact one
can apparently support behavior at any stage

e (an RL help us make sense of this mess?

65




strategy 1: model based RL

4 0 1 2
S, DD o .~
L R
_l s, I_
learn model of task through experience Q(S,,L)=0 L =0
compute Q values by dynamic L 82< X =0
programming (or other method of look- S1< R
ahead/planning) R g |—< DDD =1
3
computationally costly, but also flexible Q(S;,R) = 2 R k =92

[Immediately sensitive to change)]

Daw, Niv, Dayan (2003] &6




strateqgy Il: model free RL

quick, reflexive

4 0 1 2
S, DDD ¢ N

L R

_l S, —
e |learn values through prediction errors TEY

e choosing actions is easy so behavior is Stored: "
Q(S,R)=0
Q(Sy,L) =4

e but needs a lot of experience to learn Q(Sy,R) =2 Q(S,L) = 1
e and inflexible, need relearning to adapt to Q(S,,R) =2

any change (habitual)

Daw, Niv, Dayan (2003] &7




this answer raises two questions:

¢ \Why should the brain use two different strategies/
controllers in parallel?

e |[f it uses two; how can it arbitrate between the two when
they disagree (new decision making problem...]

OUR NEW STRATEGY
HAS NEVER WORKED
FOR ANYONE BEFORE.

THAT WILL GIVE
US THE ELEMENT
OF SURPRISE.

scottadams@aol.com

www.dilbert.com

Daw, Niv, Dayan (2003] &8




dNsSWers

1. each system is best in different situations (use each one when it is most
suitable/most accurate)]

e goaldirected [forward search] - good with limited training, close to the
reward (don't have to search ahead too far)

® habitual [cache] - good after much experience, distance from reward
not so important

2. arbitration: trust the system that is more confident in its

recommendation
_ estimated .
e use Bayesian RL (explore/exploit in unknown action
MDP; POMDP) value| | e

e different sources of uncertainty in the
two systems ——

cache  model
Daw, Niv, Dayan (2003] &9




osummary so far...

e animal conditioned behavior is not a simple
unitary phenomenon: the same response can
result from different neural and computational
origins

e different neural mechanisms work in parallel to
support behavior: cooperation and competition

e RL provides clues as to why this should be so,
and what each system does
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Qutline

The brain coarse-grain

Learning and decision making in animals and humans:
what does RL have to do with it?

A success story. Dopamine and prediction errors
Actor/Critic architecture in basal ganglia

SARSA vs (-learning: can the brain teach us about ML?
Model free and model based RL in the brain

Average reward RL & tonic dopamine

Risk sensitivity and RL in the brain

Open challenges and future directions

71




still a bunch of open q

Behavior Motivation

X £

V160 vs HR

.

Jyestions...

Dopamine

* What did you know about

dopamine before today?

* \What are the main effects

of dopamine?
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modeling response rates (vigor]
using RL

Niv, Daw, Dayan (2003]) 73




model dynamics

vigor cost | unit cost | Py
Cy Cy

cost

S Other
— . S .
O U\ T4 time //C}\\ T, time @" ©coo
\ / \ \
\ / \ \
choose Costs choose Costs
(action,T) Rewards| | (action,T) Rewards
= (LP,T¢) = (LP,T,)

Niv, Daw, Dayan (2005]

74




model dynamics

Goal: Choose actions and latencies to maximize the
average rate of return (rewards minus costs per time]

Q[S.a,t) = (Rewards - Costs) + V([S..1] - R

O_ @ \\ T1 time

\
\

choose
(action,T)
= (LP’T‘I )

/
/

Costs
Rewards

\
\

/®thime @- ©0o0
/ \ \

\
\

choose
(action,T)
- (LP,Tz)

Costs
Rewards

Niv, Daw, Dayan (2005]
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cost/benefit tradeoffs

Choice of action:

* want to maximize rewards
* and minimize costs

Choice of latency:

* slow — less costly [vigor cost)
* slow — delays (all) rewards [wastes time]
* what is the cost of time?

Q(S.a,t) = (Rewards - Costs) + V[S5.41] - R

Niv, Daw, Dayan (2005]
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putting motivation in the picture;

Motivation = mapping from outcomes to subjective utilities

\»&é«"\\é

=4 |=2
| (=2 |=1
DDD =2 |=4
Jr_y =10 |=-10

Two traditional effects of motivation in psychology:
1. Directing
2. Energizing (+this is the puzzling one; can RL explain it?)

Niv, Joel, Dayan (2006) 77




two orthogonal effects
of motivation in the model

\ <
DDD & &
(‘O‘b \e\\)
~ / B
— — =2 =4
(\Q DDD (=2 |=2
1. Outcome-specific: 2. Qutcome-general:
0 4
c 08
@)
3 o
@ 0.6 cC
ks e
(O
S o4 c 2
@©
g :
o) 0.2
[
Q.
0 0 .
left lever  right lever left lever  right lever

Niv, Joel, Dayan (2006] 7s




behind the scenes

unadjusted
o) low R
) ==
©
>
a | _ =
| higher R
T
Q(a,t,5] = Rewards - Costs + Future - Opportunity
Returns Cost

e reward rate determines the "cost of sloth”
¢ higher rate of reward: pressure on all actions to be faster
e Energizing effect (nonspecific “drive”) is an optimal solution!
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how does dopamine fit in the picture?

Phasic dopamine firing = reward prediction error

/\ V
/ X

VWhat about tonic dopamine?

less

3_\:5: ;f(')) ring any bells??

Niv, Daw, Joel, Dayan (2006)] so




the tonic dopamine hypothesis

tonic level of dopamine = net reward rate

NB. Phasic signal still needed as prediction error for value learning

Niv, Daw, Joel, Dayan (2006]) s




summary so far...

In the real world every action we choose comes with a choice of
latency

Adding a notion of vigor or response rate to reinforcement
learning models can explain much about the vigor or rate of
behavior

.. and motivation
.. and dopamine

suggestion: relation between dopamine and response vigor Is due
to optimal decision making

some insight into disorders [Parkinson’s etc.]

insight into cost/benefit tradeoffs in modelfree RL
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Qutline

The brain coarse-grain

Learning and decision making in animals and humans:
what does RL have to do with it?

A success story. Dopamine and prediction errors
Actor/Critic architecture in basal ganglia

SARSA vs (-learning: can the brain teach us about ML?
Model free and model based RL in the brain

Average reward RL & tonic dopamine

Risk sensitivity and RL in the brain *NEW*

Open challenges and future directions
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summary so far...

Although we are used to thinking about expected
rewards in RL...

The brain (and human behavior) seems to fold risk
(variance) into predictive values as well

Why is this a good thing to do?
Can this help RL applications?
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Qutline

The brain coarse-grain

Learning and decision making in animals and humans:
what does RL have to do with it?

A success story. Dopamine and prediction errors
Actor/Critic architecture in basal ganglia

SARSA vs (-learning: can the brain teach us about ML?
Model free and model based RL in the brain

Average reward RL & tonic dopamine

Risk sensitivity and RL in the brain

Open challenges and future directions
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Neural RL: Open challenges

e How can RL deal with e How does the brain deal

noisy inputs? with noisy inputs?
(temporal noise!]

e How can RL deal with ¢ How does the brain deal
an unspecified state with an unspecified state
space? space?

e How can RL deal with ¢ How does the brain deal
multiple goals? Transfer with multiple goals?
between tasks? Transfer between tasks?
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Open challenges |: structure
learning

e Acquisition of hierarchical structure (parsing of
tasks into their components]

e [Detection of change: when to unlearn versus
when to build a new model

e | earning an appropriate state space for each
task
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Open challenges Il: model-free
learning in the brain

¢ |n some cases (eg. conditioned inhibition]
dopamine prediction errors differ from simple RL
— implications for RL?

e Reward versus punishment. dopamine seems to
care only about the former. \Why?

e Adaptive scaling of prediction errors in the brain
and Kalman filtering(?)

e Diversity of prediction errors in the brain”? ([more
experiments with complex tasks needed]

¢ [iming noise... (abundant in the brain; detrimental
to simple TD learning]
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summary: WWhat have we
learned here?

RL has revolutionized how we think about learning
In the brain

Theoretical, but also practical (even clinical?]
implications for neuroscience

Neuroscience continues to be a "consumer” of
VIL theory/algorithms

This does not have to be a one-way street:
humans solve some problems so well that it Is
silly not to use human learning as an inspiration
for new RL methods
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THANK YOU!

RED WINE MAKES TUEM LIVE IONGER,
BUT THEY GET TO BE AREALPAIN.

[ | CANT
X 1 s | DRINKING
Torotk - | MERIST,

et
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iInterested in reading more?
some recent reviews of neural RL

Y Niv (20083] - Reinforcement learning in the brain - The Journal of Mathematical
Psychology

P Dayan & Y Niv (2008] - Reinforcement learning and the brain: The Good, The Bad and The
Ugly - Current Opinion in Neurobiology, 18(2), 185-196

MM Botvinick, Y Niv & A Barto (2008] - Hierarchically organized behavior and its neural
foundations: A reinforcement learning perspective - Cognition (online prepublication)

K Doya (2008] - Modulators of decision making - Nature Neuroscience 11,410-416

MFS Rushworth & TEJ Behrens (2008] - Choice, uncertainty and value in prefrontal and
cingulate cortex - Nature Neuroscience 11, 389-397/

A Johnson, MA van der Meer & AD Redish (2007] - Integrating hippocampus and striatum
in decision-making - Current Opinion in Neurobiology, 17, 682-697

JP O’Doherty, A Hampton & H Kim (2007] - Model-based fMRI and its application to reward
learning and decision making - Annals of the New York Academy of Science, 1104, 35-53

ND Daw & K Doya (2006] - The computational neurobiology of learning and reward -
Current Opinion in Neurobiology, 6, 199-204
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