
Intrusion	Detection	System	Installation	
	

Installation	(Already	completed)	
	
apt-get	update	&&	apt-get	install	libpcre3	libpcre3-dbg	build-essential	autoconf	automake	
bison	flex	libtool	libpcap-dev	libnet1-dev	unzip	nbtscan	libpcap0.8-dev	libpcre3-dev	g++	make	
git	libdnet	libxslt-dev	libxml2-dev	libmysqlclient-dev	libdumbnet-dev	libdnet-dev	liblwp-
protocol-https-perl	bzip2	curl		libapr1-dev	libaprutil1-dev	libcurl4-openssl-dev	libcrypt-ssleay-
perl	mysql-client	vim	apache2	wget-y	
	
cd	/usr/local/src/		
wget	https://www.snort.org/downloads/snort/daq-2.0.6.tar.gz	
wget	http://prdownloads.sourceforge.net/libdnet/libdnet-1.11.tar.gz	
wget	https://snort.org/downloads/snort/snort-2.9.8.3.tar.gz		
wget	https://github.com/libwww-perl/libwww-perl/archive/master.zip	
git	clone	https://github.com/firnsy/barnyard2.git		
git	clone	https://github.com/shirkdog/pulledpork.git	

Start	Point:	
	
Create	a	user	and	group	for	snort	to	run	as:	
groupadd	snort	&&	useradd	-g	snort	snort	
	
Install	DAQ:	
cd	/usr/local/src/daq-2.0.6	&&	./configure	&&	make	&&	make	install	
	
Install	Libdnet:	
cd	/usr/local/src/libdnet-1.11	&&	./configure	&&	make	&&	make	install	
ln	-s	/usr/local/lib/libdnet.1.0.1	/usr/lib/libdnet.1	
	
Install	Snort:	
cd	/usr/local/src/snort-2.9.8.3/	&&	./configure	--enable-sourcefire	--with-dnet-
libraries=/usr/local/lib	&&	make	&&	make	install	&&	ldconfig	
	
Create	directories:	
mkdir	/usr/local/rules	
mkdir	/usr/local/conf	
mkdir	/var/log/snort	
mkdir	/var/log/barnyard2	
chmod	666	/var/log/barnyard2	
	

Copy	configuration	files:	
	
cp	/usr/local/src/snort-2.9.8.3/etc/snort.conf	/usr/local/conf/	
cp	/usr/local/src/snort-2.9.8.3/etc/gen-msg.map	/usr/local/rules/	
cp	/usr/local/src/snort-2.9.8.3/etc/classification.config	/usr/local/conf/	
cp	/usr/local/src/snort-2.9.8.3/etc/reference.config	/usr/local/conf/	
cp	/usr/local/src/snort-2.9.8.3/etc/threshold.conf	/usr/local/conf/	
cp	/usr/local/src/snort-2.9.8.3/etc/unicode.map	/usr/local/conf/	
	
Create	some	files:	
touch	/usr/local/rules/white_list.rules	
touch	/usr/local/rules/black_list.rules	
touch	/usr/local/rules/local.rules	
touch	/var/log/snort/barnyard2.waldo	
	
	
Modify	snort.conf:	
Change	the	first	line	to	the	second	
	
var	RULE_PATH	../rules	
var	RULE_PATH	/usr/local/rules	
	
var	SO_RULE_PATH	../so_rules	
var	SO_RULE_PATH	/usr/local/rules/so_rules	
	
var	PREPROC_RULE_PATH	../preproc_rules	
var	PREPROC_RULE_PATH	/usr/local/rules/preproc_rules	
	
var	WHITE_LIST_PATH	../rules	
var	WHITE_LIST_PATH	/usr/local/rules	
	
var	BLACK_LIST_PATH	../rules	
var	BLACK_LIST_PATH	/usr/local/rules	
	
#	output	unified2:	filename	merged.log,	limit	128,	nostamp,	mpls_event_types,	
vlan_event_types	
output	unified2:	filename	snort.u2,	limit	128	
	
include	$RULE_PATH	
#	include	$RULE_PATH	
	
#	include	$RULE_PATH/local.rules	
include	$RULE_PATH/local.rules	
	

#	include	$RULE_PATH/app-detect.rules	
include	$RULE_PATH/snort.rules	
	
dynamicdetection	directory	
#dynamicdetection	directory	
	
Modify	permissions	on	Snort	logging	directory:	
chmod	777	/var/log/snort	
	
Install	Barnyard:	
	
cd	/usr/local/src/barnyard2		
autoreconf	-fvi	-I	./m4	&&	./configure	--with-mysql	--with-mysql-libraries=/usr/lib/x86_64-linux-
gnu/	--with-mysql-includes=/usr/include/	
make	
sudo	make	install	
	
Copy	the	default	barnyard.conf	file	to	the	conf	directory:	
cp	/usr/local/src/barnyard2/etc/barnyard2.conf	/usr/local/conf/	
	
Modify	barnyard2.conf:	
	
config	reference_file:	/etc/snort/reference.config	
config	reference_file:	/usr/local/conf/reference.config	
	
#config	hostname:	thor	
config	hostname:	ids	
	
#config	interface:	eth0	
config	interface:	eth0	
	
#			output	database:	log,	mysql,	user=root	password=test	dbname=db	host=localhost	
output	database:	log,	mysql,	user=snorby	password=p@55word	dbname=snorby	
host=SERVERIPADDRESSHERE	ssl_cert=/usr/local/certificates/openssl/client-cert.pem	
ssl_key=/usr/local/certificates/openssl/client-key.pem	
	
/etc/snort/gen-msg.map	
/usr/local/rules/gen-msg.map	
	
/etc/snort/sid-msg.map	
/usr/local/rules/sid-msg.map	
	
/etc/snort/reference.config	
/usr/local/conf/reference.config	

	
/etc/snort/classification.config	
/usr/local/conf/classification.config	
	
#config	logdir:	/tmp	
config	logdir:	/var/log/barnyard2	
	
Configure	Pulled	Pork:	
	
#	perl	modules	(also	for	pulled	pork)	
	
cd	/usr/local/src/libwww-perl-master	&&	perl	Makefile.PL	&&	make	&&	make	install	
cp	/usr/local/src/pulledpork/etc/pulledpork.conf	/usr/local/conf/	
	
#rule_url=https://www.snort.org/reg-rules/|snortrules-snapshot.tar.gz|<oinkcode>	
rule_url=https://www.snort.org/reg-rules/|snortrules-snapshot.tar.gz|Youroinkcode		
	
rule_path=/usr/local/etc/snort/rules/snort.rules	
rule_path=/usr/local/rules/snort.rules		
	
local_rules=/usr/local/etc/snort/rules/local.rules	
local_rules=/usr/local/rules/local.rules		
	
sid_msg=/usr/local/etc/snort/sid-msg.map	
sid_msg=/usr/local/rules/sid-msg.map		
	
black_list=/usr/local/etc/snort/rules/iplists/default.blacklist	
black_list=/usr/local/rules/black_list.rules		
	
config_path=/usr/local/etc/snort/snort.conf	
config_path=/usr/local/conf/snort.conf		
	
distro=FreeBSD-8-1	
distro=Debian-6-0		
	
sid_changelog=/var/log/sid_changes.log	
sid_changelog=/usr/local/rules/sid_changes.log	
	
ignore=deleted.rules,experimental.rules,local.rules	
ignore=deleted.rules,experimental.rules	
	
temp_path=/tmp	
temp_path=/usr/local/src	 	

	
	
We	can't	run	pulled	pork	without	a	network	connection,	but	here’s	how	you	would	run	pulled	
pork.	We’ll	actually	run	it	a	little	later	in	this	document	using	a	locally	downloaded	file:	
/usr/local/src/pulledpork/pulledpork.pl	-c	/usr/local/conf/pulledpork.conf	-v	
	
Change	permissions	on	directories:	
chown	-R	snort:snort	/var/log/snort	
chown	-R	snort:snort	/usr/local/conf	
chown	-R	snort:snort	/usr/local/rules	
chown	-R	snort:snort	/var/log/barnyard2	
	
mkdir	-p	/usr/local/certificates/	
	
Get	the	certificates	for	secure	MySQL	connections.	These	were	made	on	the	SIEM/Snorby	
machine.	
scp	-r	ids@IPADDRESS:/usr/local/certificates/openssl	/usr/local/certificates/	
	
Add	to	/etc/mysql/my.cnf,	under	the	[client]	section:	
	
ssl-ca=/usr/local/certificates/openssl/ca-cert.pem	
ssl-cert=/usr/local/certificates/openssl/client-cert.pem	
ssl-key=/usr/local/certificates/openssl/client-key.pem	
	
Test	mysql	from	the	client	to	the	server:	
mysql	-h	192.168.115.153	-usnorby	-pp@55word	
	
Start	the	Virtual	Machine	called	‘webhost’	

	
	
Log	in	with:	
Username:	webhost	
Password:	webhost	

	
Find	out	the	IP	address:	
sudo	ifconfig	<enter	the	password	‘webhost’	when	prompted>	
You’ll	see	something	similar	to	this:	

	
	
Because	of	the	way	that	wordpress	works,	it’s	possible	that	the	address	you	were	assigned	is	
different	from	the	one	that	wordpress	thinks	it’s	at.	To	fix	this,	edit	the	following	file	on	the	
webhost	(with	sudo)	
/var/www/html/wordpress/wp-config.php	
	
And	add	the	following	to	the	end	(substitute	youripaddress	with	the	address	you	found	in	the	
last	step.	
define('WP_HOME','http://youripaddress);	
define('WP_SITEURL','http://youripaddress	');	
	
Save	and	quit.	
	
Open	a	web	browser	(or	a	new	tab	if	you	still	have	the	Snorby	page	open	and	go	to:	
http://ipaddress	(where	ipaddress	is	the	IP	address	you	just	viewed)	
	
First,	let’s	exploit	a	vulnerability	in	a	plugin	on	the	web	server.	Enter	the	following	URL	to	
exploit	the	Revolution	Slider	plugin	with	a	local	file	include,	allowing	us	to	acquire	the	
database	configuration	file:	
ipaddress/wp-admin/admin-ajax.php?action=revslider_show_image&img=../wp-config.php	
	
The	wp-config	file	will	be	downloaded	as	‘admin-ajax.php’	

	
	
This	demonstrates	an	attack	on	our	webhost	while	we	don’t	have	visibility	into	it.	Now,	we’ll	
repeat	this	attack	but	will	be	able	to	view	an	alert	in	our	IDS.	
	
Back	in	the	IDS	Virtual	Machine:	
Apache	needs	to	be	installed.	Since	we’re	doing	this	with	no	internet,	I’ve	already	installed	it.	
Additionally,	the	following	apache	mods	have	been	enabled:	
proxy	proxy_html	proxy_http	
	
With	the	following	command:	
a2enmod	proxy	proxy_html	proxy_http	

	
Edit	/etc/apache2/sites-enabled/000-default.conf	
And	remove	everything,	replacing	it	with:	
<VirtualHost	*:80>	
				ProxyPreserveHost	On	
				ProxyPass	/	http://IPADDRESSOFWEBHOST/	
				ProxyPassReverse	/	http://IPADDRESSOFWEBHOST/	
ServerName	localhost	
</VirtualHost>	
	
Restart	Apache:	
sudo	service	apache2	restart	
					
NOTE:	Assuming	this	system	was	installed	in	a	cloud	environment,	such	as	on	a	VPS,	you	would	
want	to	log	into	your	registrar	for	the	domain	you	want	to	monitor	and	update	the	DNS	
settings.	Instead	of	pointing	the	DNS	for	yourdomain.com	to	the	webhost,	you	would	point	the	
DNS	to	the	IDS.	When	visitors	go	to	yourdomain.com,	they	will	proxy	through	the	IDS.	
Since	this	is	all	being	done	locally	on	virtual	machines,	we	don’t	have	to	configure	DNS.	
	
Create	a	local	IDS	rule.	Add	the	following	to	/usr/local/rules/local.rules	
alert	tcp	any	any	->	$HOME_NET	$HTTP_PORTS	(msg:"WordPress	RevSlider	<	4.2	plugin	wp-
config	local	file	include";	flow:to_server,established;	
content:"action=revslider_show_image&img=../wp-config.php";	nocase;	
reference:url,blog.sucuri.net/2014/09/slider-revolution-plugin-critical-vulnerability-being-
exploited.html;	classtype:attempted-admin;	sid:1000001;	rev:1;)	
	
Run	pulled	pork	using	a	locally	downloaded	rules	file:	
/usr/local/src/pulledpork/pulledpork.pl	–n	-c	/usr/local/conf/pulledpork.conf	-v	
	
Run	a	packet	capture	program	for	full	visibility:	
If	you	want	to	see	the	response	from	the	host,	you	can	run	tcpdump	on	the	IDS	while	doing	the	
attack:	
tcpdump	–An	–s0	–I	eth0	–w	/tmp/packetcapture.pcap	
	
Start	snort	
NOTE:	If	you	are	running	tcpdump	in	your	ssh	session,	you	will	need	to	open	a	new	connection	
to	the	sensor	to	run	snort.	
sudo	/usr/local/bin/snort	-u	snort	-g	snort	-i	eth0	-l	/var/log/snort/	-c	/usr/local/conf/snort.conf	
	
Wait	until	the	system	shows	that	it	has	started	packet	processing:	

	
	
Exploit	Revolution	Slider	again:	
ipaddress/wp-admin/admin-ajax.php?action=revslider_show_image&img=../wp-config.php	
	
The	configuration	file	will	download	again:	

	
	
	
Stop	snort	
	
If	you	look	in	/var/log/snort,	you’ll	see	a	new	snort	file	that	captured	packets:	

	
	
Make	sure	you	have	the	correct	IP	in	the	barnyard2.conf	file.	It	should	be	the	IP	address	of	
the	Snorby	host	(for	this	example,	it’s	192.168.115.153)	
/usr/local/conf/barnyard2.conf:	

	
	
Start	barnyard:	
/usr/local/bin/barnyard2	-c	/usr/local/conf/barnyard2.conf	-d	/var/log/snort	-f	snort.u2	-w	
/var/log/snort/barnyard2.waldo	
	
You	may	have	to	wait	for	a	bit	before	Barnyard2	starts	processing	the	data.	
	
Visit	Snorby	in	the	web	browser.	You	should	notice	a	sensor	has	been	added:	

	
	

NOTE:	Occasionally,	the	‘worker’	process	for	Snorby	can	get	hung	up.	If	you	see	a	message	
stating	that	the	worker	process	is	not	running,	click	‘Administration’	‘Worker	and	job	queue’	
and	press	the	button	to	restart	the	worker.	
	
If	you	click	on	‘Events’,	you	should	see	something	similar	to	the	following:	

	
	
Clicking	on	that	event	should	show	you	the	GET	request	that	triggered	this	alert:	

	
	
Review	the	captured	packets	to	see	if	the	attempt	was	successful:	
tcpdump	-An	-s0	-r	/tmp/packetcapture.pcap	port	80	|	less	
	
If	you	search	for	‘GET’,	within	a	few	searches	you	will	see	the	GET	request	we	used	to	acquire	
the	config	file	and	the	response	just	below,	which	confirms	that	it	was	a	successful	attack:	
	
GET	request:	

	
	
Server	response:	
	

	

