The innovative potential of Lactobacillus rhamnosus LR06, Lactobacillus pentosus LPS01, Lactobacillus plantarum LP01, and Lactobacillus delbrueckii Subsp. delbrueckii LDD01 to restore the "gastric barrier effect" in patients chronically treated with PPI: a pilot study

J Clin Gastroenterol. 2012 Oct:46 Suppl:S18-26. doi: 10.1097/MCG.0b013e318267b55d.

Abstract

Background: Gastroesophageal reflux disease is a very widespread condition. In Europe, it is estimated that about 175 million people suffer from this disease and have to chronically take drugs to increase gastric pH. The proton pump inhibitors (PPIs) such as omeprazole, lansoprazole, and esomeprazole are the most widely used drug typology in this regard. However, the inhibition of normal gastric acid secretion has important side effects, the most important being bacterial overgrowth in the stomach and duodenum with a concentration of >10⁵ viable cells/mL. As a major consequence of this, many harmful or even pathogenic bacteria contained in some foods could survive the gastric transit and colonize either the stomach itself, the duodenum, or the gut, where they could establish acute and even chronic infections with unavoidable consequences for the host's health. In other words, the "gastric barrier effect" is strongly reduced or even disrupted. To date, there are no real strategies to deal with this widespread, although still relatively little known, problem. The aim of this study was to confirm the gastric bacterial overgrowth in long-term PPI consumers and to assess the efficacy of some probiotic bacteria, belonging to both genera Lactobacillus and Bifidobacterium, in the reduction of gastric and duodenal bacterial overgrowth, therefore partially restoring the gastric barrier effect against foodborne pathogenic bacteria.

Methods: For this purpose, probiotics with a strong demonstrated inhibitory activity on gram-negative bacteria, such as Escherichia coli, were tested in a human intervention trial involving a total of 30 subjects treated with PPIs for either 3 to 12 consecutive months (short-term) or >12 consecutive months (long-term). An additional 10 subjects not taking PPIs were enrolled and used as a control group representing the general population. Four selected probiotics Probiotical SpA (Novara, Italy), namely Lactobacillus rhamnosus LR06 (DSM 21981), Lactobacillus pentosus LPS01 (DSM 21980), Lactobacillus plantarum LP01 (LMG P-21021), and Lactobacillus delbrueckii subsp. delbrueckii LDD01 (DSM 22106) were administered for 10 days to 10 subjects treated with PPIs for >12 months (group B). In the 60 mg formulation, N-acetylcysteine was included as well in light of its well-known mechanical effects on bacterial biofilms. Gastroscopies were performed at the beginning of the study (d0) in all the groups (A, B, C, and D) and after 10 days (d10) in group B only; that is, at the end of probiotics intake. The total viable cells and total Lactobacillus were quantified in gastric juice and duodenal brushing material from all subjects. The results were compared among all the groups and with the control subjects (group D) to confirm the bacterial overgrowth. A comparison was made also between d0 and d10 in group B to quantify the efficacy of the 4 probiotics administered for 10 days. Fecal samples were collected from all groups at d0, including subjects not treated with PPIs, and in group B only at d10. Specific bacterial classes, namely enterococci, total coliforms, E. coli, molds, and yeasts were quantified in all fecal specimens.

Results: The results collected confirmed the strong bacterial overgrowth in the stomach and duodenum of people treated with PPIs compared with subjects with a normal intragastric acidity. It is also worth noting that the bacterial cell counts in subjects who underwent a long-term treatment with a PPI were greater than the results from subjects taking these drugs for 3 to 12 months. The intake of 4 specific probiotic strains with a marked antagonistic activity towards 5 E. coli bacteria, including the enterohaemorrhagic O157:H7 strain, and an effective amount of N-acetylcysteine (NAC) was able to significantly reduce bacterial overgrowth in long-term PPI-treated subjects. Total lactobacilli represented the major percentage of bacterial counts, thus demonstrating the ability of such bacteria to colonize the stomach and the duodenum, at least temporarily, and to consequently restore the gastric barrier effect. A significant decrease in fecal enterococci, total coliforms, E. coli, molds, and yeasts in subjects treated with PPIs was recorded at the end of probiotics supplementation (d10) compared with baseline (d0) in group B. This is a further confirmation of the barrier effect also exerted at the stomach level.

Conclusions: PPIs are the most widely sold and used drugs in the world. However, the chronic use of these pharmacological molecules exposes the subject to the risk of foodborne infections as most pathogens are able to survive the gastric transit in a condition of significantly decreased acidity.

Publication types

  • Clinical Trial

MeSH terms

  • Bacterial Load
  • Duodenum / microbiology*
  • Enterobacteriaceae / growth & development*
  • Enterobacteriaceae / isolation & purification
  • Enterococcus / growth & development*
  • Enterococcus / isolation & purification
  • Female
  • Gastric Juice / microbiology
  • Gastroesophageal Reflux / drug therapy*
  • Humans
  • Lacticaseibacillus rhamnosus / growth & development
  • Lactobacillus / growth & development*
  • Lactobacillus delbrueckii / growth & development
  • Lactobacillus plantarum / growth & development
  • Male
  • Pilot Projects
  • Probiotics / administration & dosage*
  • Proton Pump Inhibitors / adverse effects*
  • Proton Pump Inhibitors / therapeutic use
  • Time Factors
  • Treatment Outcome
  • Yeasts / growth & development
  • Yeasts / isolation & purification

Substances

  • Proton Pump Inhibitors