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Abstract: Update anywhere-anytime-anyway transactional 
replication has unstable behavior as the workload scales up: 
a ten-fold increase in nodes and traffic gives a thousand fold 
increase in deadlocks or reconciliations. Master copy repli-
cation (primary copy) schemes reduce this problem.  A simple 
analytic model demonstrates these results.  A new two-tier 
replication algorithm is proposed that allows mobile (discon-
nected) applications to propose tentative update transactions 
that are later applied to a master copy.  Commutative update 
transactions avoid the instability of other replication 
schemes. 
 
1. Introduction 
Data is replicated at multiple network nodes for performance 
and availability.  Eager replication keeps all replicas exactly 
synchronized at all nodes by updating all the replicas as part 
of one atomic transaction.  Eager replication gives serializ-
able execution – there are no concurrency anomalies.  But, 
eager replication reduces update performance and increases 
transaction response times because extra updates and mes-
sages are added to the transaction.  
 
Eager replication is not an option for mobile applications 
where most nodes are normally disconnected.  Mobile appli-
cations require lazy replication algorithms that asynchro-
nously propagate replica updates to other nodes after the up-
dating transaction commits.  Some continuously connected 
systems use lazy replication to improve response time. 
 
Lazy replication also has shortcomings, the most serious be-
ing stale data versions.  When two transactions read and write 
data concurrently, one transaction’s updates should be serial-
ized after the other’s. This avoids concurrency anomalies.  
Eager replication typically uses a locking scheme to detect 
and regulate concurrent execution.  Lazy replication schemes 
typically use a multi-version concurrency control scheme to 
detect non-serializable behavior [Bernstein, Hadzilacos, 
Goodman], [Berenson, et. al.]. Most multi-version isolation 
schemes provide the transaction with the most recent commit-
ted value.  Lazy replication may allow a transaction to see a 
very old committed value.  Committed updates to a local 
value may be “in transit” to this node if the update strategy is 
“lazy”. 
 
Permission to make digital/hard copy of part or all of this material is 
granted provided that copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the publica-
tion, and its date appear, and notice is given that copying is by permission 
of the Association of Computing Machinery. To copy otherwise, to 
republish, requires a fee and/or specific permission. 

Eager replication delays or aborts an uncommitted trans-
action if committing it would violate serialization.  Lazy 
replication has a more difficult task because some replica 
updates have already been committed when the serializa-
tion problem is first detected.  There is usually no auto-
matic way to reverse the committed replica updates, 
rather a program or person must reconcile conflicting 
transactions. 
 
To make this tangible, consider a joint checking account 
you share with your spouse.  Suppose it has $1,000 in it.  
This account is replicated in three places: your check-
book, your spouse’s checkbook, and the bank’s ledger.  
 
Eager replication assures that all three books have the 
same account balance.  It prevents you and your spouse 
from writing checks totaling more than $1,000.  If you 
try to overdraw your account, the transaction will fail.   
 
Lazy replication allows both you and your spouse to write 
checks totaling $1,000 for a total of $2,000 in withdraw-
als.  When these checks arrived at the bank, or when you 
communicated with your spouse, someone or something 
reconciles the transactions that used the virtual $1,000.   
 
It would be nice to automate this reconciliation.  The 
bank does that by rejecting updates that cause an over-
draft.  This is a master replication scheme:  the bank has 
the master copy and only the bank’s updates really count.  
Unfortunately, this works only for the bank.  You, your 
spouse, and your creditors are likely to spend consider-
able time reconciling the “extra” thousand dollars worth 
of transactions.  In the meantime, your books will be in-
consistent with the bank’s books.  That makes it difficult 
for you to perform further banking operations. 
 
The database for a checking account is a single number, 
and a log of updates to that number.  It is the simplest 
database.  In reality, databases are more complex and the 
serialization issues are more subtle.   
 
The theme of this paper is that update-anywhere-
anytime-anyway replication is unstable.   
1. If the number of checkbooks per account increases 

by a factor of ten, the deadlock or reconciliation 
rates rises by a factor of a thousand. 

2. Disconnected operation and message delays mean  
lazy replication has more frequent reconciliation. 
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Simple replication works well at low loads and with a few 
nodes.  This creates a scaleup pitfall.  A prototype system 
demonstrates well.  Only a few transactions deadlock or need 
reconciliation when running on two connected nodes.  But the 
system behaves very differently when the application is scaled 
up to a large number of nodes, or when nodes are discon-
nected more often, or when message propagation delays are 
longer.  Such systems have higher transaction rates.  Sud-
denly, the deadlock and reconciliation rate is astronomically 
higher (cubic growth is predicted by the model).  The data-
base at each node diverges further and further from the others 
as reconciliation fails.  Each reconciliation failure implies 
differences among nodes.  Soon, the system suffers system 
delusion —  the database is inconsistent and there is no obvi-
ous way to repair it [Gray & Reuter, pp. 149-150]. 
 
This is a bleak picture, but probably accurate.  Simple replica-
tion (transactional update-anywhere-anytime-anyway) cannot 
be made to work with global serializability.   
 
In outline, the paper gives a simple model of replication and a 
closed-form average-case analysis for the probability of waits, 
deadlocks, and reconciliations.  For simplicity, the model 
ignores many issues that would make the predicted behavior 
even worse.  In particular, it ignores the message propagation 
delays needed to broadcast replica updates.  It ignores “true” 
serialization, and assumes a weak multi-version form of com-
mitted-read serialization (no read locks) [Berenson].  The 
paper then considers object master replication.  Unrestricted 
lazy master replication has many of the instability problems 
of eager and group replication. 
 
A restricted form of replication avoids these problems: two-
tier replication has base nodes that are always connected, 
and mobile nodes that are usually disconnected. 
1. Mobile nodes propose tentative update transactions to 

objects owned by other nodes.  Each mobile node keeps two 
object versions: a local version and a best known master 
version. 

2. Mobile nodes occasionally connect to base nodes and 
propose tentative update transactions to a master node.  
These proposed transactions are re-executed and may 
succeed or be rejected.  To improve the chances of suc-
cess, tentative transactions are designed to commute 
with other transactions.  After exchanges the mobile 
node’s database is synchronized with the base nodes.  
Rejected tentative transactions are reconciled by the 
mobile node owner who generated the transaction. 

 
Our analysis shows that this scheme supports lazy repli-
cation and mobile computing but avoids system delusion:  
tentative updates may be rejected but the base database 
state remains consistent.   
 
2.  Replication Models 
Figure 1 shows two ways to propagate updates to repli-
cas: 
1.  Eager: Updates are applied to all replicas of an ob-

ject as part of the original transaction. 
2.  Lazy: One replica is updated by the originating 

transaction.  Updates to other replicas propagate asyn-
chronously, typically as a separate transaction for each 
node. 

Figure 2: Updates may be controlled in two ways.  Either 
all updates emanate from a master copy of the object, or 
updates may emanate from any.  Group ownership has 
many more chances for conflicting updates. 

 

Ob j e c t  M as ter                     Ob jec t  Group
                                             (no master)

 
Figure 2 shows two ways to regulate replica updates:  
1. Group:  Any node with a copy of a data item can 

update it.  This is often called update anywhere.  
2. Master: Each object has a master node.  Only the 

master can update the primary copy of the object.  All 
other replicas are read-only. Other nodes wanting to 
update the object request the master do the update. 

Table 1:  A taxonomy of replication strategies contrast-
ing propagation strategy (eager or lazy) with the owner-
ship strategy (master or group). 
Propagation  

vs.  
Ownership 

 
Lazy 

 
Eager 

Group N transactions 
N object owners 

one transaction 
N object owners 

Master N transactions 
one object owner 

one transaction  
one object owner 

Two Tier N+1 transactions, one object owner 
tentative local updates, eager base updates

 

Figure 1:  When replicated, a simple single-node transaction 
may apply its updates remotely either as part of the same 
transaction (eager) or as separate transactions (lazy).  In ei-
ther case, if data is replicated at N nodes, the transaction does 
N times as much work 

A single-node
Transaction

Write A
Write B
Write C
Commit

Write A
Write B
Write C
Commit

Write A
Write B
Write C
Commit

A three-node
Eager Transaction

A three-node
Lazy Transaction

(actually 3 Transactions)
Write A
Write B
Write C
Commit

Write A
Write B
Write C
Commit

Write A

Write B

Write C

Commit

Write A

Write B

Write C

Commit

Write A

Write B

Write C

Commit
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Table 2.  Variables used in the model and analysis 
DB_Size number of distinct objects in the data-

base 
Nodes number of nodes; 

 each node replicates all objects 
Transactions number of concurrent transactions at a 

node. This is a derived value. 
TPS number of transactions per second origi-

nating at this node. 
Actions number of updates in a transaction 

Action_Time time to perform an action 
Time_Between_ 

Disconnects 
mean time between network disconnect 
of a node. 

Disconnected_ 
time 

mean time node is disconnected from 
network 

Message_Delay time between update of an object and 
update of a replica (ignored) 

Message_cpu processing and transmission time 
needed to send a replication message or 
apply a replica update (ignored) 

The analysis below indicates that group and lazy replication 
are more prone to serializability violations than master and 
eager replication 
 
The model assumes the database consists of a fixed set of ob-
jects.  There are a fixed number of nodes, each storing a rep-
lica of all objects.  Each node originates a fixed number of 
transactions per second.  Each transaction updates a fixed 
number of objects.  Access to objects is equi-probable (there 
are no hotspots).  Inserts and deletes are modeled as updates.   
Reads are ignored.  Replica update requests have a transmit 
delay and also require processing by the sender and receiver.  
These delays and extra processing are ignored; only the work 
of sequentially updating the replicas at each node is modeled.  
Some nodes are mobile and disconnected most of the time.  
When first connected, a mobile node sends and receives de-
ferred replica updates.  Table 2 lists the model parameters. 
 
One can imagine many variations of this model.  Applying 
eager updates in parallel comes to mind.  Each design alter-
native gives slightly different results.  The design here 
roughly characterizes the basic alternatives. We believe obvi-
ous variations will not substantially change the results here. 
 
Each node generates TPS transactions per second.  Each 
transaction involves a fixed number of actions. Each action 
requires a fixed time to execute.  So, a transaction’s duration 
is Actions x Action_Time.  Given these two observations, the 
number of concurrent transactions originating at a node is: 
 
Transactions = TPS x Actions x Action_Time (1) 
 
A more careful analysis would consider that fact that, as sys-
tem load and contention rises, the time to complete an action 
increases.  In a scaleable server system, this time-dilation is a 
second-order effect and is ignored here. 

 
In a system of N nodes, N times as many transactions will 
be originating per second.  Since each update transaction 
must replicate its updates to the other (N-1) nodes, it is 
easy to see that the transaction size for eager systems 
grows by a factor of N and the node update rate grows by 
N2.  In lazy systems, each user update transaction gener-
ates N-1 lazy replica updates, so there are N times as 
many concurrent transactions, and the node update rate is 
N2 higher.  This non-linear growth in node update rates 
leads to unstable behavior as the system is scaled up. 
 
3. Eager Replication 
 
Eager replication updates all replicas when a transaction 
updates any instance of the object.  There are no seriali-
zation anomalies (inconsistencies) and no need for rec-
onciliation in eager systems.  Locking detects potential 
anomalies and converts them to waits or deadlocks.  
 
With eager replication, reads at connected nodes give 
current data.  Reads at disconnected nodes may give stale 
(out of date) data.  Simple eager replication systems pro-
hibit updates if any node is disconnected. For high avail-
ability, eager replication systems allow updates among 
members of the quorum or cluster [Gifford], [Garcia-
Molina].  When a node joins the quorum, the quorum 
sends the new node all replica updates since the node was 

Partitioning
Two 1 TPS systems

Replication
Two  2 TPS systems

2 TPS server
1 TPS server

100 Users

1 TPS server
100 Users

O
 tp

s

O
 tp

s 100 Users

2 TPS server100 Users

1 
tp

s

1 
tp

s

1 TPS server
100 Users

Base case
a 1 TPS system

2 TPS server200 Users

Scaleup
to a 2 TPS centralized system

 
Figure 3: Systems can grow by (1) scaleup: buying a 
bigger machine, (2) partitioning: dividing the work 
between two machines, or (3) replication: placing the 
data at two machines and having each machine keep 
the data current. This simple idea is key to under-
standing the N2 growth. Notice that each of the repli-
cated servers at the lower right of the illustration is 
performing 2 TPS and the aggregate rate is 4 TPS. 
Doubling the users increased the total workload by a 
factor of four.  Read-only transactions need not gener-
ate any additional load on remote nodes. 
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disconnected.  We assume here that a quorum or fault toler-
ance scheme is used to improve update availability. 
Even if all the nodes are connected all the time, updates may 
fail due to deadlocks that prevent serialization errors. The 
following simple analysis derives the wait and deadlock rates 
of an eager replication system.  We start with wait and dead-
lock rates for a single-node system. 
 
In a single-node system the “other” transactions have about 
Tranascations Actions?

2
 resources locked (each is about half way 

complete).  Since objects are chosen uniformly from the data-
base, the chance that a request by one transaction will request 
a resource locked by any other transaction is: 
Transactions Actions

DB size
?

?2 _
.  A transaction makes Actions such re-

quests, so the chance that it will wait sometime in its lifetime 
is approximately [Gray et. al.], [Gray & Reuter pp. 428]: 

PW
Transactions Actions

DB size
Transactions Actions

DB Size
Acctions? ? ? ?

?
? ?

?
1 1

2 2

2
(

_
)

_
 (2) 

 
A deadlock consists of a cycle of transactions waiting for one 
another.  The probability a transaction forms a cycle of length 
two is PW2 divided by the number of transactions. Cycles of 
length j are proportional to PWj and so are even less likely if 
PW << 1.  Applying equation (1), the probability that the 
transaction deadlocks is approximately:  

PD
PW

Transactions
Transactions Actions

DB Size

TPS Action Time Actions

DB Size
? ?

?
? ? ?

?

2 4

2

5

24 4_

_

_
 (3) 

 
Equation (3) gives the deadlock hazard for a transaction.  The 
deadlock rate for a transaction is the probability it deadlock’s 
in the next second.  That is PD divided by the transaction 
lifetime (Actions x Action_Time).   

Trans Deadlock rate
TPS Actions

DB Size
_ _

_
? ?

?

4

24
 (4) 

Since the node runs Transactions concurrent transactions, the 
deadlock rate for the whole node is higher. Multiplying equa-
tion (4) and equation (1), the node deadlock rate is: 
 

Node Deadlock Rate
TPS Action Time Actions

DB Size
_ _

_
_

? ? ?
?

2 5

24
     (5) 

 
Suppose now that several such systems are replicated using 
eager replication —  the updates are done immediately as in 
Figure 1.  Each node will initiate its local load of TPS trans-
actions per second1.  The transaction size, duration, and  
aggregate transaction rate for eager systems is: 
 
Transaction_Size =  Actions x Nodes 
Transaction_Duration = Actions x Nodes x Action_Time 
Total_TPS = TPS x Nodes (6) 

                                                        
1  The assumption that transaction arrival rate per node stays constant as nodes 
are replicated assumes that nodes are lightly loaded.   As the replication work-
load increases, the nodes must grow processing and IO power to handle the in-
creased load.  Growing power at an N2 rate is problematic. 

 
Each node is now doing its own work and also applying 
the updates generated by other nodes.  So each update 
transaction actually performs many more actions (Nodes 
x Actions) and so has a much longer lifetime —  indeed it 
takes at least Nodes times longer2.  As a result the total 
number of transactions in the system rises quadratically 
with the number of nodes: 
  
Total_Transactions = TPS x Actions x Action_Time x Nodes2 (7) 
 
This rise in active transactions is due to eager transac-
tions taking N-Times longer and due to lazy updates gen-
erating N-times more transactions.  The action rate also 
rises very fast with N.  Each node generates work for all 
other nodes.  The eager work rate, measured in actions 
per second is: 
Action_Rate = Total_TPS x Transaction_Size 
                                = TPS x Actions x Nodes2 (8) 
   
It is surprising that the action rate and the number of 
active transactions is the same for eager and lazy sys-
tems.  Eager systems have fewer-longer transactions.  
Lazy systems have more and shorter transactions.  So, 
although equations (6) are different for lazy systems, 
equations (7) and (8) apply to both eager and lazy sys-
tems. 
 
Ignoring message handling, the probability a transaction 
waits can be computed using the argument for equation 
(2).  The transaction makes Actions requests while the 
other Total_Transactions have Actions/2 objects locked.  
The result is approximately: 

PW eager Total Transactions Actions
Actions
DB Size

TPS Action Time Actions Nodes
DB Size

_ _
_

_
_

? ? ?
?

? ? ? ?
?

2

3 2

2  (9) 
This is the probability that one transaction waits.  The 
wait rate (waits per second) for the entire system is com-
puted as: 
Total Eager Wait Rate

PW eager
Transaction Duration

Total Transactions

TPS Action Time Actions Nodes
DB Size

_ _ _
_

_
_

_ ( )
_

? ?

? ? ? ?
?

2 3

2

 (10) 

As with equation (4), The probability that a particular 
transaction deadlocks is approximately:  

                                                        
2 An alternate model has eager actions broadcast the update to all replicas 
in one instant.  The replicas are updated in parallel and the elapsed time for 
each action is constant (independent of N).  In our model, we attempt to 
capture message handing costs by serializing the individual updates. If one 
follows this model, then the processing at each node rises quadraticly, but 
the number of concurrent transactions stays constant with scaleup.  This 
model avoids the polynomial explosion of waits and deadlocks if the total 
TPS rate is held constant. 
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PD eager
Total Transactions Actions

DB Size

TPS Action Time Actions Nodes
DB Size

_
_

_

_
_

? ?
?

? ? ? ?
?

4

2

5 2

2

4

4

 (11) 

The equation for a single-transaction deadlock implies the 
total deadlock rate.  Using the arguments for equations (4) 
and (5),  and using equations (7) and (11): 
Total Eager Deadlock Rate

Total Transactions
PD eager

Transaction Duration

TPS Action Time Actions Nodes
DB Size

_ _ _

_
_

_

_
_

? ?

? ? ? ?
?

2 5 3

24

 (12) 

 
If message delays were added to the model, then each transac-
tion would last much longer, would hold resources much 
longer, and so would be more likely to collide with other 
transactions. Equation (12) also ignores the “second order” 
effect of two transactions racing to update the same object at 
the same time (it does not distinguish between Master and 
Group replication).  If DB_Size >> Node, such conflicts will 
be rare. 
 
This analysis points to some serious problems with eager rep-
lication.  Deadlocks rise as the third power of the number of 
nodes in the network, and the fifth power of the transaction 
size. Going from one-node to ten nodes increases the dead-
lock rate a thousand fold.  A ten-fold increase in the transac-
tion size increases the deadlock rate by a factor of 100,000. 
 
To ameliorate this, one might imagine that the database size 
grows with the number of nodes (as in the checkbook exam-
ple earlier, or in the TPC-A, TPC-B, and TPC-C bench-
marks).  More nodes, and more transactions mean more data.  
With a scaled up database size, equation (12) becomes: 
 
Eager Deadlock Rate Scaled DB

TPS Action Time Actions Nodes
DB Size

_ _ _ _

_
_

? ? ? ?
?

2 5

24

 (13) 

Now a ten-fold growth in the number of nodes creates only a 
ten-fold growth in the deadlock rate.  This is still an unstable 
situation, but it is a big improvement over equation (12) 
 
Having a master for each object helps eager replication avoid 
deadlocks.  Suppose each object has an owner node. Updates 
go to this node first and are then applied to the replicas.  If, 
each transaction updated a single replica, the object-master 
approach would eliminate all deadlocks.   
 
In summary, eager replication has two major problems: 
1. Mobile nodes cannot use an eager scheme when discon-

nected.  
2. The probability of deadlocks, and consequently failed 

transactions rises very quickly with transaction size and 

with the number of nodes.  A ten-fold increase in 
nodes gives a thousand-fold increase in failed trans-
actions (deadlocks).   

 
We see no solution to this problem.  If replica updates 
were done concurrently, the action time would not in-
crease with N then the growth rate would only be quad-
ratic.   
 
4. Lazy Group Replication 
 
Lazy group replication allows any node to update any 
local data.  When the transaction commits, a transaction 
is sent to every other node to apply the root transaction’s 
updates to the replicas at the destination node (see Figure 
4).  It is possible for two nodes to update the same object 
and race each other to install their updates at other 
nodes.  The replication mechanism must detect this and 
reconcile the two transactions so that their updates are 
not lost. 
 
Timestamps are commonly used to detect and reconcile 
lazy-group transactional updates.  Each object carries the 
timestamp of its most recent update.  Each replica update 
carries the new value and is tagged with the old object 
timestamp. Each node detects incoming replica updates 
that would overwrite earlier committed updates. The 
node tests if the local replica’s timestamp and the up-
date’s old timestamp are equal.  If so, the update is safe. 
The local replica’s timestamp advances to the new trans-
action’s timestamp and the object value is updated.  If the 
current timestamp of the local replica does not match the 
old timestamp seen by the root transaction, then the up-
date may be “dangerous”.  In such cases, the node rejects 
the incoming transaction and submits it for reconcilia-
tion.  

Write A

Write B

Write C

Commit

Write A

Write B

Write C

Commit

Root
Transaction

Write A

Write B

Write C

Commit

OID, old time, new value
TRID, Timestamp

A Lazy Transaction

Lazy
Transactions

 
Figure 4: A lazy transaction has a root execution that 
updates either master or local copies of data.  Then sub-
sequent transactions update replicas at remote nodes —  
one lazy transaction per remote replica node.  The lazy 
updates carry timestamps of each original object.  If the 
local object timestamp does not match, the update may be 
dangerous and some form of reconciliation is needed. 
Transactions that would wait in an eager replication sys-
tem face reconciliation in a lazy-group replication sys-
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tem. Waits are much more frequent than deadlocks because it 
takes two waits to make a deadlock.  Indeed, if waits are a 
rare event, then deadlocks are very rare (rare2).  Eager repli-
cation waits cause delays while deadlocks create application 
faults.  With lazy replication, the much more frequent waits 
are what determines the reconciliation frequency.  So, the 
system-wide lazy-group reconciliation rate follows the trans-
action wait rate equation (Equation 10): 
Lazy Group Reconciliation Rate

TPS Action Time Actions Nodes
DB Size

_ _ _

_ ( )
_

? ? ? ?
?

2 3

2

 (14) 

 
As with eager replication, if message propagation times were 
added, the reconciliation rate would rise.  Still, having the 
reconciliation rate rise by a factor of a thousand when the 
system scales up by a factor of ten is frightening. 
 
The really bad case arises in mobile computing.  Suppose that 
the typical node is disconnected most of the time.  The node 
accepts and applies transactions for a day.  Then, at night it 
connects and downloads them to the rest of the network.  At 
that time it also accepts replica updates.  It is as though the 
message propagation time was 24 hours. 
 
If any two transactions at any two different nodes update the 
same data during the disconnection period, then they will 
need reconciliation.  What is the chance of two disconnected 
transactions colliding during the Disconnected_Time? 
 
If each node updates a small fraction of the database each day 
then the number of distinct outbound pending object updates 
at reconnect is approximately: 
Outbound Updates Disconnect Time TPS Actions_ _? ? ?  (15) 
 
Each of these updates applies to all the replicas of an object.  
The pending inbound updates for this node from the rest of 
the network is approximately (Nodes-1) times larger than 
this. 

? ?
Inbound Updates

Nodes Disconnect Time TPS Actions

_

_? ? ? ? ?1
 (16) 

 
If the inbound and outbound sets overlap, then reconciliation 
is needed. The chance of an object being in both sets is ap-
proximately: 
P collision

Inbound Updates Ou tbound Updates
D B Size

N o d e s Disconnect T i m e T P S Actions
D B Size

( )

_ _
_

( _ )
_

? ?

? ? ? ? 2

 (17) 

Equation (17) is the chance one node needs reconciliation dur-
ing the Disconnect_Time cycle.  The rate for all nodes is: 

? ?

L a z y G r o u p _ Reconcilia tion_ Rate

P collision
Node s

D isconnect T i m e

D isconnect T i m e T P S Actions Node s
D B Size

_

( )
_

_
_

?

?

?
? ? ? 2

 (18) 

The quadratic nature of this equation suggests that a sys-
tem that performs well on a few nodes with simple trans-
actions may become unstable as the system scales up. 
 
 5. Lazy Master Replication 
 
Master replication assigns an owner to each object.  The 
owner stores the object’s correct current value. Updates 
are first done by the owner and then propagated to other 
replicas. Different objects may have different owners.   
 
When a transaction wants to update an object, it sends an 
RPC (remote procedure call) to the node owning the ob-
ject. To get serializability, a read action should send 
read-lock RPCs to the masters of any objects it reads. 
 
To simplify the analysis, we assume the node originating 
the transaction broadcasts the replica updates to all the 
slave replicas after the master transaction commits.  The 
originating node sends one slave transaction to each 
slave node (as in Figure 1). Slave updates are timestam-
ped to assure that all the replicas converge to the same 
final state.  If the record timestamp is newer than a rep-
lica update timestamp, the update is “stale” and can be 
ignored.  Alternatively, each master node sends replica 
updates to slaves in sequential commit order. 
 
Lazy-Master replication is not appropriate for mobile 
applications.  A node wanting to update an object must 
be connected to the object owner and participate in an 
atomic transaction with the owner.  
 
As with eager systems, lazy-master systems have no rec-
onciliation failures; rather, conflicts are resolved by wait-
ing or deadlock.  Ignoring message delays, the deadlock 
rate for a lazy-master replication system is similar to a 
single node system with much higher transaction rates.  
Lazy master transactions operate on master copies of 
objects.  But, because there are Nodes times more users, 
there are Nodes times as many concurrent master trans-
actions and approximately Nodes2 times as many replica 
update transactions.  The replica update transactions do 
not really matter, they are background housekeeping 
transactions.  They can abort and restart without affect-
ing the user.  So the main issue is how frequently the 
master transactions deadlock.  Using the logic of equa-
tion (5), the deadlock rate is approximated by: 

Lazy Master Deadlock Rate
TPS Nodes Action Time Actions

DB Size
_ _ _

( ) _
_

? ? ? ?
?

2 5

24
(19) 
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This is better behavior than lazy-group replication. Lazy-
master replication sends fewer messages during the base 
transaction and so completes more quickly. Nevertheless, all 
of these replication schemes have troubling deadlock or rec-
onciliation rates as they grow to many nodes. 
 
In summary, lazy-master replication requires contact with 
object masters and so is not useable by mobile applications.  
Lazy-master replication is slightly less deadlock prone than 
eager-group replication primarily because the transactions 
have shorter duration. 
6. Non-Transactional Replication Schemes 
 
The equations in the previous sections are facts of nature —   
they help explain another fact of nature.  They show why 
there are no high-update-traffic replicated databases with 
globally serializable transactions.   
  
Certainly, there are replicated databases: bibles, phone books, 
check books, mail systems, name servers, and so on.  But up-
dates to these databases are managed in interesting ways —  
typically in a lazy-master way. Further, updates are not re-
cord-value oriented; rather, updates are expressed as transac-
tional transformations such as “Debit the account by $50” 
instead of  “change account from $200 to $150”. 
 
One strategy is to abandon serializabilty for the convergence 
property: if no new transactions arrive, and if all the nodes 
are connected together, they will all converge to the same 
replicated state after exchanging replica updates.  The result-
ing state contains the committed appends, and the most recent 
replacements, but updates may be lost. 
 
Lotus Notes gives a good example of convergence [Kawell].  
Notes is a lazy group replication design (update anywhere, 
anytime, anyhow).  Notes provides convergence rather than 
an ACID transaction execution model.  The database state 
may not reflect any particular serial execution, but all the 
states will be identical. As explained below, timestamp 
schemes have the lost-update problem.  
 
Lotus Notes achieves convergence by offering lazy-group rep-
lication at the transaction level.  It provides two forms of up-
date transaction:   
1. Append adds data to a Notes file.  Every appended note 

has a timestamp.  Notes are stored in timestamp order.  If 
all nodes are in contact with all others, then they will all 
converge on the same state. 

2. Timestamped replace a value replaces a value with a 
newer value. If the current value of the object already has a 
timestamp greater than this update’s timestamp, the incom-
ing update is discarded.   

If convergence were the only goal, the timestamp method 
would be sufficient.  But, the timestamp scheme may lose the 
effects of some transactions because it just applies the most 
recent updates.  Applying a timestamp scheme to the check-
book example, if there are two concurrent updates to a check-

book balance, the highest timestamp value wins and the 
other update is discarded as a “stale” value. Concurrency 
control theory calls this the lost update problem.  Time-
stamp schemes are vulnerable to lost updates.   
 
Convergence is desirable, but the converged state should 
reflect the effects of all committed transactions.  In gen-
eral this is not possible unless global serialization tech-
niques are used.   
 
In certain cases transactions can be designed to commute, 
so that the database ends up in the same state no matter 
what transaction execution order is chosen. Timestamped 
Append is a kind of commutative update but there are 
others (e.g., adding and subtracting constants from an 
integer value).  It would be possible for Notes to support 
a third form of transaction: 
3. Commutative updates that are incremental trans-

formations of a value that can be applied in any order.   
 
Lotus Notes, the Internet name service, mail systems, 
Microsoft Access, and many other applications use some 
of these techniques to achieve convergence and avoid 
delusion.   
 
Microsoft Access offers convergence as follows.  It has a 
single design master node that controls all schema up-
dates to a replicated database.  It offers update-anywhere 
for record instances.  Each node keeps a version vector 
with each replicated record.  These version vectors are 
exchanged on demand or periodically.  The most recent 
update wins each pairwise exchange. Rejected updates 
are reported  [Hammond]. 
 
The examples contrast with a simple update-anywhere-
anytime-anyhow lazy-group replication offered by some 
systems.  If the transaction profiles are not constrained, 
lazy-group schemes suffer from unstable reconciliation 
described in earlier sections.  Such systems degenerate 
into system delusion as they scale up.  
 
Lazy group replication schemes are emerging with spe-
cialized reconciliation rules. Oracle 7 provides  a choice 
of twelve reconciliation rules to merge conflicting up-
dates [Oracle].  In addition, users can program their own 
reconciliation rules. These rules give priority certain 
sites, or time priority, or value priority, or they merge 
commutative  updates.   The rules make some transac-
tions commutative.  A similar, transaction-level approach 
is followed in the two-tier scheme described next. 
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7.  Two-Tier Replication  
 
An ideal replication scheme would achieve four goals: 
Availability and scaleability: Provide high availability and 

scaleability through replication, while avoiding instability. 
Mobility: Allow mobile nodes to read and update the data-

base while disconnected from the network. 
Serializability: Provide single-copy serializable transaction 

execution. 
Convergence: Provide convergence to avoid system delusion. 
  
The safest transactional replication schemes, (ones that avoid 
system delusion) are the eager systems and lazy master sys-
tems.  They have no reconciliation problems (they have no 
reconciliation).  But these systems have other problems.  As 
shown earlier:  
1. Mastered objects cannot accept updates if the master 

node is not accessible.  This makes it difficult to use mas-
ter replication for mobile applications. 

2. Master systems are unstable under increasing load.  
Deadlocks rise quickly as nodes are added. 

3. Only eager systems and lazy master (where reads go to 
the master) give ACID serializability. 

 
Circumventing these problems requires changing the way the 
system is used.  We believe a scaleable replication system 
must function more like the check books, phone books, Lotus 
Notes, Access, and other replication systems we see about us. 
 
Lazy-group replication systems are prone to reconciliation 
problems as they scale up. Manually reconciling conflicting 
transactions is unworkable. One approach is to undo all the 
work of any transaction that needs reconciliation —  backing 
out all the updates of the transaction.  This makes transac-
tions atomic, consistent, and isolated, but not durable —  or at 
least not durable until the updates are propagated to each 
node. In such a lazy group system, every transaction is tenta-
tive until all its replica updates have been propagated.  If 
some mobile replica node is disconnected for a very long 
time, all transactions will be tentative until the missing node 
reconnects.  So, an undo-oriented lazy-group replication 
scheme is untenable for mobile applications.   
 
The solution seems to require a modified mastered replication 
scheme.  To avoid reconciliation, each object is mastered by a 
node —  much as the bank owns your checking account and 
your mail server owns your mailbox. Mobile agents can make 
tentative updates, then connect to the base nodes and imme-
diately learn if the tentative update is acceptable. 
 
The two-tier replication scheme begins by assuming there are 
two kinds of nodes:  
Mobile nodes are disconnected much of the time.  They store 

a replica of the database and may originate tentative 
transactions.  A mobile node may be the master of some 
data items. 

Base nodes are always connected.  They store a replica of 
the database.  Most items are mastered at base nodes. 

 
Replicated data items have two versions at mobile nodes: 
Master Version: The most recent value received from the 

object master.  The version at the object master is the 
master version, but disconnected or lazy replica 
nodes may have older versions. 

Tentative Version: The local object may be updated by 
tentative transactions.  The most recent value due to 
local updates is maintained as a tentative value. 

 
Similarly, there are two kinds of transactions: 
Base Transaction: Base transactions work only on mas-

ter data, and they produce new master data. They in-
volve at most one connected-mobile node and may 
involve several base nodes. 

Tentative Transaction: Tentative transactions work on 
local tentative data.  They produce new tentative ver-
sions.  They also produce a base transaction to be run 
at a later time on the base nodes.  

 
Tentative transactions must follow a scope rule: they 
may involve objects mastered on base nodes and mas-
tered at the mobile node originating the transaction (call 
this the transaction’s scope).  The idea is that the mobile 
node and all the base nodes will be in contact when the 
tentative transaction is processed as a “real” base transac-
tion —  so the real transaction will be able to read the 
master copy of each item in the scope.   
 
Local transactions that read and write only local data can 
be designed in any way you like.  They cannot read-or 
write any tentative data because that would make them 
tentative.   
 
Figure 5: The two-tier-replication scheme.  Base nodes 
store replicas of the database.  Each object is mastered at 
some node.  Mobile nodes store a replica of the database, 
but are usually disconnected.  Mobile nodes accumulate 
tentative transactions that run against the tentative data-
base stored at the node.  Tentative transactions are re-
processed as base transactions when the mobile node 
reconnects to the base.  Tentative transactions may fail 
when reprocessed.   

Base Nodes

tentative transactions

base updates &
failed base transactions

Mobile
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The base transaction generated by a tentative transaction may 
fail or it may produce different results.  The base transaction  
has an acceptance criterion: a test the resulting outputs must 
pass for the slightly different base transaction results to be 
acceptable.  To give some sample acceptance criteria:   
? ? The bank balance must not go negative. 
? ? The price quote can not exceed the tentative quote. 
? ? The seats must be aisle seats. 
If a tentative transaction fails, the originating node and per-
son who generated the transaction are informed it failed and 
why it failed.  Acceptance failure is equivalent to the recon-
ciliation mechanism of the lazy-group replication schemes.  
The differences are (1) the master database is always con-
verged —  there is no system delusion, and (2) the originating 
node need only contact a base node in order to discover if a 
tentative transaction is acceptable. 
 
To continue the checking account analogy, the bank’s version 
of the account is the master version.  In writing checks, you 
and your spouse are creating tentative transactions which 
result in tentative versions of the account.  The bank runs a 
base transaction when it clears the check.  If you contact your 
bank and it clears the check, then you know the tentative 
transaction is a real transaction. 
 
Consider the two-tier replication scheme’s behavior during 
connected operation.  In this environment, a two-tier system 
operates much like a lazy-master system with the additional 
restriction that no transaction can update data mastered at 
more than one mobile node.  This restriction is not really 
needed in the connected case. 
 
Now consider the disconnected case.  Imagine that a mobile 
node disconnected a day ago.  It has a copy of the base data as 
of yesterday.  It has generated tentative transactions on that 
base data and on the local data mastered by the mobile node.  
These transactions generated tentative data versions at the 
mobile node.  If the mobile node queries this data it sees the 
tentative values.  For example, if it updated documents, pro-
duced contracts, and sent mail messages, those tentative up-
dates are all visible at the mobile node.   
 
When a mobile node connects to a base node, the mobile 
node:  
1.  Discards its tentative object versions since they will soon 

be refreshed from the masters,  
2.  Sends replica updates for any objects mastered at the mo-

bile node to the base node  “hosting” the mobile node,  
3.  Sends all its tentative transactions (and all their input 

parameters) to the base node to be executed in the order 
in which they committed on the mobile node,  

4.  Accepts replica updates from the base node (this is stan-
dard  lazy-master replication), and  

5.  Accepts notice of the success or failure of each tentative 
transaction. 

 

The “host” base node is the other tier of the two tiers.  
When contacted by a mobile note, the host base node: 
1.  Sends delayed replica update transactions to the mo-

bile node. 
2.  Accepts delayed update transactions for mobile-

mastered objects from the mobile node. 
3.  Accepts the list of tentative transactions, their input 

messages, and their acceptance criteria. Reruns each 
tentative transaction in the order it committed on the 
mobile node.  During this reprocessing, the base 
transaction reads and writes object master copies us-
ing a lazy-master execution model.  The scope-rule 
assures that the base transaction only accesses data 
mastered by the originating mobile node and base 
nodes.  So master copies of all data in the transac-
tion’s scope are available to the base transaction.  If 
the base transaction fails its acceptance criteria, the 
base transaction is aborted and a diagnostic message 
is returned to the mobile node. If the acceptance cri-
teria requires the base and tentative transaction have 
identical outputs, then subsequent transactions read-
ing tentative results written by T will fail too. On the 
other hand, weaker acceptance criteria are possible.  

4.  After the base node commits a base transaction, it 
propagates the lazy replica updates as transactions 
sent to all the other replica nodes.  This is standard 
lazy-master. 

5.  When all the tentative transactions have been re-
processed as base transactions, the mobile node’s 
state is converged with the base state.  

 
The key properties of the two-tier replication scheme are: 
1. Mobile nodes may make tentative database updates. 
2. Base transactions execute with single-copy serializa-

bility so the master base system state is the result of a 
serializable execution. 

3. A transaction becomes durable when the base trans-
action completes. 

4. Replicas at all connected nodes converge to the base 
system state.  

5. If all transactions commute, there are no reconcilia-
tions. 

  
This comes close to meeting the four goals outlined at the 
start of this section.   
 
When executing a base transaction, the two-tier scheme 
is a lazy-master scheme.  So, the deadlock rate for base 
transactions is given by equation (19).  This is still an N2 
deadlock rate.  If a base transaction deadlocks, it is re-
submitted and reprocessed until it succeeds, much as the 
replica update transactions are resubmitted in case of 
deadlock. 
 
The reconciliation rate for base transactions will be zero 
if all the transactions commute.  The reconciliation rate 
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is driven by the rate at which the base transactions fail their 
acceptance criteria. 
 
Processing the base transaction may produce results different 
from the tentative results. This is acceptable for some applica-
tions. It is fine if the checking account balance is different 
when the transaction is reprocessed. Other transactions from 
other nodes may have affected the account while the mobile 
node was disconnected.  But, there are cases where the 
changes may not be acceptable.  If the price of an item has 
increased by a large amount, if the item is out of stock, or if 
aisle seats are no longer available, then the salesman’s price 
or delivery quote must be reconciled with the customer. 
 
These acceptance criteria are application specific.  The repli-
cation system can do no more than detect that there is a dif-
ference between the tentative and base transaction.  This is 
probably too pessimistic a test.  So, the replication system will 
simply run the tentative transaction.  If the tentative transac-
tion completes successfully and passes the acceptance test, 
then the replication system assumes all is well and propagates 
the replica updates as usual. 
Users are aware that all updates are tentative until the trans-
action becomes a base transaction.  If the base transaction 
fails, the user may have to revise and resubmit a transaction. 
The programmer must design the transactions to be commu-
tative and to have acceptance criteria to detect whether the 
tentative transaction agrees with the base transaction effects. 
 

Updates & RejectsUpdates & Rejects

send Tentative Xacts Transactions
from OthersTentative

Transactions
at Mobile Node

 
Figure 6: Executing tentative and base transactions in two-
tier replication. 
 
Thinking again of the checkbook example of an earlier sec-
tion.  The check is in fact a tentative update being sent to the 
bank.  The bank either honors the check or rejects it.  Analo-
gous mechanisms are found in forms flow systems ranging 
from tax filing, applying for a job, or subscribing to a maga-
zine.  It is an approach widely used in human commerce. 
 
This approach is similar to, but more general than the Data 
Cycle architecture [Herman] which has a single master node 
for all objects.   
 
The approach can be used to obtain pure serializability if the 
base transaction only reads and writes master objects (current 
versions).   
 

8. Summary 
 
Replicating data at many nodes and letting anyone up-
date the data is problematic.  Security is one issue, per-
formance is another.  When the standard transaction 
model is applied to a replicated database, the size of each 
transaction rises by the degree of replication.  This, com-
bined with higher transaction rates means dramatically 
higher deadlock rates. 
 
It might seem at first that a lazy replication scheme will 
solve this problem.  Unfortunately, lazy-group replication 
just converts waits and deadlocks into reconciliations.  
Lazy-master replication has slightly better behavior than 
eager-master replication.  Both suffer from dramatically 
increased deadlock as the replication degree rises.  None 
of the master schemes allow mobile computers to update 
the database while disconnected from the system. 
 
The solution appears to be to use semantic tricks (time-
stamps, and commutative transactions), combined with a 
two-tier replication scheme.  Two-tier replication sup-
ports mobile nodes and combines the benefits of an ea-
ger-master-replication scheme and a local update 
scheme. 
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