United States Patent

US009836730B1

(12) (10) Patent No.: US 9,836,730 B1
Metrailler et al. 45) Date of Patent: Dec. 5, 2017
(54) SOFTWARE PRODUCT PIRACY 6,542,943 B2 4/2003 Cheng et al.
MONETIZATION PROCESS 6,697,948 B1* 2/2004 Rabin ... GO6F 21/10
705/52
(71) Applicant: Corel Corporation, Ottawa (CA) 7051211 BL* 52006 Matyas, Jr. Hog‘;o/gz/gf
7,316,013 B2* 1/2008 Kawano GOGF 8/65
(72) Inventors: Gerard Metrailler, Orleans (CA); awane 717/168
Alireza Fakhraei, Ottawa (CA) 7,331,063 B2* 2/2008 Gunyakti GO6F 21/12
705/57
(73) Assignee: Corel Corporation, Ottawa, Ontario 7,389,504 B2* 6/2008 Kawano GOGF 8/65
(CA) 717/168
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 888 days.
Genov “Designing Robust Copy Protection for Software Products”,
(21) Appl. No.: 13/957,419 ACM-International Conference on Computer Systems and Tech-
nologies, pp. 1-6, 2008.*
(22) Filed: Aug. 1, 2013 (Continued)
Related U.S. Application Data Primary Examiner — Anil Khatri .
(74) Attorney, Agent, or Firm — Rosenberg, Klein & Lee
(63) Continuation-in-part of application No. 13/826,836,
filed on Mar. 14, 2013. (57) ABSTRACT
A method includes a step of providing a computer readable
(51) Imt. ClL . . ° !
non-transitory storage medium comprising a computer read-
GO6F 9/44 (2006.01)
GO60 20/12 2012.01 able code as a software product configured to run on a local
Q (01) computer and configured to perform a software piracy
G060 50/18 (2012.01) L .
monetization process. The software product includes one or
(52) US. CL) more configurable features having a feature property, the
CPC ... G06Q 20/1235 (2013.01); GO6Q 50/184 feature property including a state. The method further
. . . (2013.01) includes running the computer readable code on the local
(58) Field of Classification Search computer, and collecting, by the software product running
CPC e G06Q 20/1235 on the local computer, hardware fingerprint data from the
USPC s 717/ 1687177; 709/203 local computer. The method further includes connecting
See application file for complete search history. with a computer feature server, and determining if the
. software product is legitimate. If not, the method includes a
(56) References Cited

U.S. PATENT DOCUMENTS

6,035,403 A * 3/2000 Subbiah GO6F 21/10

726/28

6,151,643 A 11/2000 Cheng et al.

1 Provide a computer readable non
tansitory storage medium

310 —J Run the computer readable code
i on alocal computer

. v

315 ~—} Coliect hardware fingerprint data

Ta 5te0 350

step of sending a message to the local computer. The
message includes instructions to change the state of a feature
property of the software product to alert a user that the
software product is not legitimate.

15 Claims, 6 Drawing Sheets

)

US 9,836,730 B1
Page 2

(56)

7,600,130
7,742,992

7,752,139
7,921,059
8,224,750
8,650,557

8,661,406
8,725,649

9,059,985
9,165,332
9,219,734
2009/0089752
2009/0260002
2011/0145789
2013/0067447

References Cited

U.S. PATENT DOCUMENTS

B2* 10/2009 001 ..cccooovvivviiiinn.

B2* 6/2010 Cronceccoceeren.

B2 7/2010 Hu
B2 4/2011 Chicks et al.
B1 7/2012 Bennett et al.

B2* 2/2014 Ogura
B2* 2/2014 Shapiro

B2* 52014 Gan ...

Bl* 6/2015
B2* 10/2015
B2* 12/2015
Al 4/2009 Tristram

Al 10/2009 Volovic et al.
Al 6/2011 Rasch et al.

Al 3/2013 Sannidhanam et al.

OTHER PUBLICATIONS

Collberg et al, “Dynamic Graph-Based Software Fingerprinting”,
ACMTransactions on Programming Languages and Systems, vol.
29, No. 6, Article 35, pp, 1-67, 2007.*

Barrera et al, “Understanding and Improving App Installation
Security Mechanisms through Empirical Analysis of Android”
ACM, pp. 81-92, 2012.*

Herrick et al, “Sustainable Automated Software Deployment Prac-
tices”, ACM, pp. 189-196, 2013 *

Heiner et al, “Secure Software Installation in a Mobile Envir-
onment ”, ACM, pp. 155-156, 2007.*

Becker et al, “Managing Combinatorial Software Installations with
Spack”, IEEE, pp. 14-23, 2016 .*

Chouta et al, “Side Channel Analysis on an Embedded Hardware
Fingerprint Biometric Comparator & Low Cost Countermeasures”,
ACM, pp. 1-6, 2014.*

Mohammadzadeh et al, “Evaluation of Fingerprinting Techniques
and a Windows-based Dynamic Honeypot”, ACM, pp. 59-66,
2013.*

* cited by examiner

U.S. Patent Dec. 5, 2017 Sheet 1 of 6 US 9,836,730 B1

Server 105

Internet

e
s
i3

K
@
Y

U.S. Patent Dec. 5, 2017 Sheet 2 of 6 US 9,836,730 B1

Provide a computer readable non-
transitory storage medium
comprising computer readable
code configured to run on a local
computer which is configured to
perform a process of feature
management

e 205 200

A
Run the computer readable code 210
on a local computer

N
Connect, by the local computer, to 215
a feature computer server

Identify an instance of an installed
computer program including the
computer readablecode,and L. 220
retrieve a feature record associated
with the installed computer
program

A

Configure a state of one or more of
a set of feature properties of the
installed computer program based
on the retrieved feature record

225

R
@
!

U.S. Patent Dec. 5, 2017 Sheet 3 of 6 US 9,836,730 B1

Provide a computer readable non- 300
transitory storage medium
comprising computer readable
305 —— code configured to run on a local
computer which is configured to
perform a process of impeding
software piracy

Y
Run the computer readable code
on a local computer

l

315 —— Collect hardware fingerprint data <«

310 ——

N

v
| Local computer connects to feature 5 T
320 —— server; server creates unigue . WaitTime | 345
identifier from collected data k »»»»»» P EHOdT ,,,,, D

\ 4 T
Verify {egitimacy of computer NO
readable code

330 ;
340
< Legitimate ~ . YES—(Blacklisted?

~eriai Numbey

325 ——

Vv AN

335

To Step 350
FIG. 3A

U.S. Patent Dec. 5, 2017

Sheet 4 of 6

Send piracy message

350

v

300

éConﬁgure piracy warning dialog box§
-» to display; provide link to purchase —

\

355

|

legitimate copy

v
N
358 »—\/// N

<//Take advantage

~_ of amnesty?
N A

’j/Reached\
~~~~~~~~~~~~~~~~~~~~~~~~ threshold no. of
dispiays?/

RN

YES
\4

YES

380 SN

: Purchase license, ‘ To
{uninstall pirated version, (... » Step
| load legitimate version | 315

N 4

A

N

Configure “Expired Trial, Viewer

365 Made” dialog box to display

v

Revert computer program to
370 ———

“viewer mode”

Y

Configure display state of Trial

375 T version Ul to: Never Visible

e ™~
Ty .
/ AN
-~ Take advantage™.

<NO-—

‘ . of amnesty? -

Nt J \\\ /
\\- ‘/,/

o

FIG. 3B

US 9,836,730 B1



U.S. Patent Dec. 5, 2017 Sheet 5 of 6 US 9,836,730 B1

FIG. 4



U.S. Patent

Dec. 5, 2017

Sheet 6 of 6

Gt o logal copy o i amy
aitonws vous 30 Dugy g vyl

US 9,836,730 B1

mg«:ﬁ LEOnram
il oense

FIG. 5



US 9,836,730 B1

1
SOFTWARE PRODUCT PIRACY
MONETIZATION PROCESS

CROSS REFERENCE TO RELATED
APPLICATION

This is a continuation-in-part of the invention described in
U.S. patent application Ser. No. 13/826,836, filed Mar. 14,
2013 by at least one of the same inventors herein, titled
“System And Method For Software Feature Management.”
The invention described in U.S. patent application Ser. No.
13/826,836 is assigned to the assignee hereof.

FIELD OF THE INVENTION

This disclosure relates to feature management and more
particularly to the management of features of a computer
program.

BACKGROUND OF THE INVENTION

Computer programs, also referred to as software, software
products, or application programs, are often made available
at the same time in more than one version. The different
versions of a computer program generally vary by the
number of features made available to a user of the computer
program. The most common way to install a given version
of' a computer program is to install the entire framework of
that version of the computer program. Accordingly, when
upgrading an already installed computer program, a succes-
sive installation usually replaces the existing computer pro-
gram framework during the subsequent installation. This
user process of upgrading an already installed computer
program by replacing the currently installed program frame-
work is inefficient.

One common method of marketing a software product is
to offer a trial version with limited features. The trial version
may include reduced functionality, or it may be fully func-
tional but only for a limited period of time, or both. After an
evaluation or trial period, the user may be offered the
opportunity to upgrade the trial version of the software to a
full version. In many cases, the end user agrees to a
perpetual license of the fully functional software, subject to
terms and conditions prohibiting, for example, copying,
modifying, editing, or distributing the software.

Trial version software can be distributed to the user by a
variety of different means. The most common method today
is to transfer the product electronically (e.g., download) over
a network, such as streaming or packetized data sent over
local or wide area networks (intranets), the Internet, and
wireless networks.

Once installed on the user’s local computer, the computer
program, be it a trial version or fully functional version, may
be accessed and used by anyone who happens to possess it.
This can present a problem for software manufacturers in
that it facilitates the illegal copying and distribution of their
software products (e.g., pirating). In effect, each valid copy
of a downloaded program can be used as a master to
generate illegal copies, or can also be used as a platform for
hackers to experiment and ultimately exploit its vulnerabili-
ties.

Software piracy occurs when software is illegally copied,
sold or improperly licensed. Forms of piracy include Inter-
net piracy, or the downloading of product serial numbers,
key generators, software cracks, and illegal versions of
products. Another form of piracy is straight-forward coun-
terfeiting, when multiple copies are illegally made and

10

15

20

25

30

35

40

45

50

55

60

2

distributed by CD or DVD. Yet another form of software
piracy is end user piracy, when someone makes or distrib-
utes software copies without paying for or having a valid
license for the number of copies in their possession.
Examples of end user piracy include companies that buy
volume licenses but under-report the additional copies of
software they’ve made; or companies that give employees
network access to software, and don’t monitor the number of
downloads in order to ensure they’re still compliant with
their license agreement; or companies or individuals who
share software among friends, allowing them to illegally
copy the product without paying for it. A less blatant but
very common form of software piracy includes softlifting,
when a single license copy of a software program is pur-
chased and then loaded onto multiple machines, contrary to
the terms of agreement. Gray market piracy occurs when
unauthorized resellers sell software at unusually low prices,
undercutting the authorized/legitimate resellers. Gray mar-
ket piracy can occur in several different forms, such as
selling illegitimate OEM software; selling academic soft-
ware to unauthorized or non-academic organizations; distri-
bution of CD Only products or replacement CDs; and selling
Not For Resale (NFR) software.

Software piracy has become a financial burden to the
software industry as well. Popular software programs, sold
in the tens or hundreds of millions, may have pirated
versions numbering in the millions. This represents a sig-
nificant percentage of potential sales, and erodes already-
strained profit margins in an industry with stiff competition.

Although some anti-piracy and copy protection schemes
currently exist to protect distributed software, these systems
are typically not adequate to protect against a determined
attack to break the protection. Moreover, once a program has
been hacked, it is usually quite easy for the hacker to
produce downloadable tools that eliminate the protection.
The time it takes to crack a software application security
system is typically measured in hours or, at most, a few days.
This means that as soon as a pirate gains possession of the
software, it is often a simple matter to remove existing
digital rights management tools, such as copy protection,
and sell or distribute illegal copies of the software.

SUMMARY OF THE INVENTION

An aspect of the present invention provides a software
product piracy monetization process. The process includes:
providing a computer readable non-transitory storage
medium storing computer readable code as a software
product; running the code on a local computer; collecting
hardware fingerprint data from the local computer; deter-
mining whether the software product is legitimate; and
sending a message to the local computer if a result of the
determining is negative. The software product may be
configured to run on a local computer and to perform a
software piracy monetization process. The message may
include instructions to change the state of a feature property
of the software product to alert a user that the software
product is not legitimate.

BRIEF DESCRIPTION OF THE DRAWINGS

The features described herein can be better understood
with reference to the drawings described below. The draw-
ings are not necessarily to scale, emphasis instead generally
being placed upon illustrating the principles of the inven-
tion. In the drawings, like numerals are used to indicate like
parts throughout the various views.



US 9,836,730 B1

3

FIG. 1 depicts a block diagram of one exemplary system
suitable to perform the processes described herein;

FIG. 2 depicts a flow chart of one exemplary embodiment
of'a process to manage the features of a computer program;

FIGS. 3A and 3B are block diagrams collectively pre-
senting a flow chart illustrating an exemplary embodiment
of the method for software piracy monetization;

FIG. 4 depicts a user interface dialog box of an exemplary
first warning to a suspected user of pirated software; and

FIG. 5 depicts a user interface dialog box of an exemplary
final warning to a suspected user of pirated software.

DETAILED DESCRIPTION OF THE
INVENTION

As described hereinabove, during an installation of a
different version of the same program (e.g. a version offering
a premium feature set), a computer program is typically
re-installed as a new computer program framework which
completely replaces the installed computer program frame-
work. Such a complete replacement of the framework is
inefficient. The framework replacement approach means
delivery of a relatively large amount of computer code,
either by download, as over the Internet, or by an actual
transfer of physical media such as by a distribution CD or
DVD.

An alternative computer distribution model installs a full
featured framework of the computer program. Many of the
features of the computer program can have an associated
feature property. The feature property can have states such
as, for example, an enabled state, a hidden state, or a
disabled state (i.e. non-enabled). There can also be a dis-
played state, or a displayed state with an indication. Features
can be displayed, for example, with an indication of the
current state of one or more configurable features. Such
displays can include an indication of feature availability,
feature non-availability, or an offer for purchase of a cur-
rently non-enabled feature. The indication can be a graphical
on-screen indication, such as, for example, a different color
font of the text of a displayed feature name, and/or a shaded
background for foreground brightness level or color, dis-
played color, brightness of color, a displayed superimposed
shaded box, etc. associated with a feature selection having
feature property currently set to a certain feature property
state. While the feature property can be similar in nature to
other properties of the computer program, such as, for
example, properties of objects, the feature property by
design, cannot typically be accessed by a user of the
computer program, nor can its state typically be set or
changed by the user of the installed computer program. The
states of one or more of the property features can be pre-set
for a distribution copy of the computer program, such as a
user might purchase in the form of a DVD or by online
download of computer program installation file.

The states of one or more of the property features can be
changed by the computer server, such as, for example, a
feature computer server on the Internet. Following installa-
tion of the computer program, the computer program can
connect to the feature server to determine what features are
available to a user of any particular installation of the
computer program. The computer program can connect one
or more times to the feature server. The feature server can
identify by any suitable means which particular installation
of a computer program is connecting to the server. The
computer program can then retrieve a corresponding prop-
erty feature record for that installed computer program to
arrange one or more configurable features of the computer

10

15

20

25

30

35

40

45

50

55

60

65

4

program as per the feature property state information con-
tained within the downloaded or otherwise accessed prop-
erty feature record. For example, an automated request
(transparent to the user) for the current states of a set of
property features for a particular installed computer program
can be accompanied, for example, by a serial number
associated with that particular installed computer program,
a computer identification of the computer on which the
computer program is installed, or a user name based on a
user logon to the installed program. For any given query, the
feature server can return information which then configures
the states of property features of a set or subset of configu-
rable property features. The installed computer framework is
thus remotely feature configurable by the feature server and
the underlying program framework no longer needs to be
replaced to change the availability of one or more of the
configurable features of the computer program.

FIG. 1 shows a block diagram of one exemplary computer
system suitable for performing the software piracy moneti-
zation computer described herein. One or more local com-
puters 101 (e.g., a client computer) are connected via any
suitable data connection 103 (e.g., cable modem, WikFi,
WiMAX, FioS, DSL, local or wide area Ethernet network
connections, etc.) typically via an Internet connection, to
any suitable cloud 102 (typically the Internet). A computer
server 105, such as, for example, a software company server,
is communicatively coupled to the network, such as the
Internet, by any suitable wired or wireless means 106. In one
embodiment of the invention the computer server 105 may
be configured as a software company’s feature server. The
one or more local computers 101 can run a software product,
such as for example, a digital painting or drawing program.
A user at a local computer 101 has an installed copy of a
software product manufactured by the software company.

FIG. 2 shows a flow chart of one exemplary embodiment
of the process. The process 200 for feature management
includes the steps of: providing a computer readable non-
transitory storage medium comprising a computer readable
code configured to run on a local computer which is con-
figured to perform a process of feature management (step
205); running the computer readable code on a local com-
puter (step 210); connecting, by the local computer, to a
feature computer server (step 215); identifying an instance
of an installed computer program including the computer
readable code, and to retrieve a feature record associated
with the installed computer program or the member from the
feature server (step 220); and configuring a state of one or
more of a set of feature properties of the installed computer
program based on the retrieved feature record (step 225).
The steps of the exemplary process 200 can be better
understood in the examples and detailed description here-
inbelow.

Example 1

A computer software company offers a computer program
in a standard and a premium version. A user obtains one
distribution version of the computer program (either stan-
dard or premium), such as by purchase of downloadable
software or by purchasing a distribution disc such as a
distribution DVD. Either by information entered during an
online purchase, or by initial online registration, a record is
created at the feature server for that user’s purchase which
indicates whether the user purchased a standard or premium
version of the computer program. The computer program is
then installed on any suitable computer. During program
startup (following installation of the computer program)



US 9,836,730 B1

5

and/or a user logon to the computer program, an automated
request (transparent to the user) for the current states of a set
of property features is sent to the feature server. The feature
server returns information to the computer program which
configures the states of property features of a set of property
features of the computer program. In Example 1, the infor-
mation returned by the property feature servers configures
the features of the installed computer program consistent
with the most recent purchase of a standard or premium
version of the computer program.

One advantage of a computer program having remotely
configurable property features is that a software company
can change the feature set available at any level of purchase
at any time. Continuing with the example of a computer
program distributed in both a standard version, and a pre-
mium version which offers more features than the standard
version, at some later date following the first use of the
computer program, either the standard user or the premium
user can be offered a different, typically larger, set of
available features. In other words, the company can later
re-define what features are made available by the different
featured versions of a program.

Subscription Based Features:

Another application for a complete framework having all
features installed with at least some of the features con-
trolled by a property feature as described herein is a sub-
scription based purchase program. In a subscription based
purchase program, a user purchases a level of features, such
as by purchase subscription of a standard subscription or a
premium subscription. By contrast with the purchase of a
feature version as described hereinabove, a subscription
purchase typically includes both a feature set (e.g. a version
with certain user available features) and a time duration for
the availability of those features. In a subscription embodi-
ment, the user feature record or computer ID feature record
further includes the authorized time duration for the sub-
scription purchase. In some cases, the purchase model could
be combined with a subscription model, where some fea-
tures of a previously purchased version can be made avail-
able on a time limited subscription basis (generally includ-
ing an ability to re-subscribe as desired). There could also be
made available an option to purchase a program version
following a subscription period.

Example 2

A user installs a computer program. The user, without any
connection to a feature server, has available the features of
the standard version of the computer program. The user then
purchases a one year subscription to the premium version of
the computer program under a user name. Following the
purchase of the subscription, the user starts the computer
program. The user enters a user name into a logon field of
the computer program at which point, the computer program
connects to the feature server and requests (transparent to
the user) a current list of the states of property features,
wherein, if still within the one year subscription period of
time, the feature server returns information to the computer
program which then configures the states of property fea-
tures of the computer program for the premium version of
the computer program. Beyond one year from the start date
of the one year subscription (if a renewal has not yet been
purchased) the feature server returns information to the
computer program which configures the states of property
features for the standard version of the computer program.
There can also be information returned by the feature server
that can prompt the user to renew the subscription. Some

10

15

20

25

30

35

40

45

50

55

60

65

6

computer programs installed only for use by subscription
can be feature limited or severely feature limited following
expiration, without timely renewal, of a subscription pro-
gram.

Offer for Feature Purchase and/or Computer Program
Upgrade:

Yet another aspect of feature management by feature
server is the ability for the computer program to offer
presently unavailable features to a user for purchase. Such
offers can range from an indication of availability, an offer
with additional information (e.g. a “teaser” in advertising
parlance), to a full offer for sale with information and user
selectable link or clickable link. The offer can be for
individual premium features, selected sets of premium fea-
tures, a premium version of the computer program, or a
premium subscription to the computer program. Such offers
can be made during normal use of the computer program. In
some cases, there can be user settable options where such
offers can be optionally displayed or not displayed by choice
of the user of the computer program.

A drop-down menu of features or a window of feature
selections (also called a docker) can list features which are
not enabled. In one contemplated embodiment, a user indi-
cating an interest in a non-enabled (disabled) feature, such
as by a user “mouse over” or mouse “hover” or any other
user attempt to click on or otherwise to select the presently
non-enabled feature, can cause the computer program to
generate a message or instruction indicating what type of
purchase or version upgrade would enable that feature.
Further, the message can include a user controlled input
option, typically by a clickable link, which can direct the
user to a purchase site, such as a purchase website. Follow-
ing a successful purchase of the feature, or more likely of a
program version or program subscription package that
includes the desired feature, the user’s record is updated at
the feature server. The computer program, alerted to a
possible purchase by operation of the purchase link, can
connect to the feature server to download the latest record.
If the user made a successful purchase, the user’s updated
record will reflect the newly available features and the
computer program will then make available to the user the
newly purchased feature as an enabled feature. Alternatively
or additionally, the next time the computer program is
started and/or the next time the user logons to the computer
program, newly purchased features can show as available
features.

Example 3

A user “mouse over” of a premium feature not currently
available on the user’s purchased version of the computer
program and/or through their level of user subscription
causes a prompt to show on the computer screen. The
prompt notifies the user that the feature of the user’s interest
is available in the premium version of the computer pro-
gram. A clickable link offers the user a path to purchase a
premium subscription to the computer program. The user
follows the path and successfully completes the purchase of
a premium subscription. Either by detecting the user activity
of having followed the purchase path to a successfully
completed purchase, and/or by a successive program start
and/or user logon to the computer program, the program
connects to the feature server and retrieves the updated
user’s record. The original non-enabled feature of interest is
now enabled.

There can be a number of ways to show one or more
non-enabled features to a user. For example, a non-enabled



US 9,836,730 B1

7

feature can be displayed in a menu or in a docker in a
different color than the enabled features, such as by a grey
text font for a non-enabled feature compared with a black
font for enabled features. There can also be a translucent box
which covers a non-enabled feature. Similarly, premium
features can be shown in a different color, such as, for
example, a blue text item in a list or in a docker, the blue text
denoting premium items compared with a black text for
standard features. The brightness or intensity of a colored
font could also be modified to indicate an enabled or
non-enabled feature. For example, a dimmed brightness or a
light shade of the same color could be used to indicate a
non-enabled feature, and a “standard” brightness or regular
shade of the same color could be used to indicate an enabled
feature. In a worst case scenario, such as, for example, for
known pirated installations, there could be an opaque box
drawn on the screen over one or more features.

Interception of Mouse Clicks:

Computer programs typically identify a feature selection
by cursor control, as is typically accomplished by a mouse
controlled (user driven) cursor position followed by a mouse
click. In such cases one technique to control the access to
features is to generate a screen mask which matches a user
displayed screen. For a region of the screen about one or
more displayed user selectable features, the display mask,
which is typically not visible to a user of the screen, can pass
or intercept mouse clicks. Thus if a feature is enabled, a user
mouse click operates the feature normally. However, if that
feature is presently disabled, the mask can intercept any
mouse clicks made in an attempt to select the non-enabled
feature. Moreover, as described hereinabove, mouse clicks
over a non-enabled feature can optionally cause a prompt to
be made to the user offering information on what version
includes the desired non-enabled feature and/or how to
purchase the non-enabled feature.

Features can be defined at build time using “feature
groups” which describe the feature state (enabled, disabled,
or hidden) for each of the entitlement states (not-started/
signed-in, signed-in, and expired).

Example 4

These feature groups can then be applied to each feature
as follows:
// Premium Feature Group definition
premium=

local_sub=ms{_entry:new{ TrialNotstarted=disabled,
TrialNotExpired=disabled, TrialExpired=disabled,
Activated=disabled},

premium_sub=ms{_entry:new{TrialNotstarted=disabled,
TrialNotExpired=enabled, TrialExpired=disabled,
Activated=enabled},

premiumtrial_sub=ms{_entry:
new{ TrialNotstarted=disabled, TrialNotExpired=enabled,
TrialExpired=disabled, Activated=enabled},

pure_sub=ms{_entry:new{TrialNotstarted=disabled,
TrialNotExpired=enabled, TrialExpired=disabled,
Activated=enabled},

Subscription=true

// Some feature declarations

Features::Styles: :Previews={*“31a3bbff-5364-1483-47d1-
¢7a9dea84022”, Subscription=true}
Features::Color::Styles::Convert ToGrayscale={“f932ddf7-
bb7c-414a-b786-cbd18ad98afc™, Subscription=true}

15

20

25

30

35

40

45

50

55

60

65

8

Features::Color::Styles::
AdvancedViewOptions={“‘cecdb1b4-22ab-949d-40d2-
dd837c0bfac9”, Subscription=true}

// Some feature status definitions
Features::Styles::Previews.status=premium
Features::Color::Styles::
ConvertToGrayscale.status=premium
Features::Color::Styles::
AdvancedViewOptions.status=premium

At the server-side entitlements, a product of a build can be
uploaded to the server. At run-time the application might
query the feature status explicitly, for example:

It (FeatureManagment::Features::Color::Styles::Convert-
ToGrayscale)

/! do something only allowed when convert to grayscale
on.

Or features can be automatically controlled by the user
interface (UI) Framework which supports the enabled, hid-
den, and disabled (teaser) states automatically by virtue of
the feature identifiers matching the Ul-Element or control
identifiers (e.g. globally unique identifiers (guids) matching
the Ul-Element or control guids). Suitable guids include
those which follow the universally unique identifier (UUID)
standard.

Now in more detail, in one exemplary embodiment, the
base-class of each UI control supported by the Ul Frame-
work includes an aspect or part known as an itemOverlay. In
some embodiments, the itemOverlay in this case includes a
win32 window whose life-time, appearance, and mouse-
click handling are manipulated according to the Feature
Status of the particular item to: 1) do nothing (enabled); 2)
highlight the item (premium or other reason to draw atten-
tion); 3) prevent use, or intercept use to put up some
information—for example how to purchase (teaser); or 4)
hide completely (hidden).

It is unimportant what operating system is used. Com-
puter programs having feature properties and process tech-
niques as described herein can be written for use with any
suitable computer operating system. The Windows™ oper-
ating system available from the Microsoft Corporation of
Redmond, Wash. is but one example of a suitable operating
system.

It is unimportant to the processes described herein what
type of local computer (e.g., a client computer) is used by a
user. It is also unimportant to the processes described herein
what type of computer is used by the feature computer
server. Typically, the local computer is physically accessible
by a user of the local computer. A computer can include any
suitable type of computer having any suitable operating
system. It is further contemplated that the inventive tech-
niques as described herein can be practiced on any suitable
computer based device having a computer processor or
firmware which simulates the functions of a computer
processor.

In most embodiments, the feature server identifies an
instance of the installed computer program. The identifica-
tion can take place in both non-subscription (e.g. purchased)
installations as well as for subscription based accounts. In
one embodiment, the step of identifying an instance of an
installed computer program includes identitying an instance
of an installed computer program by an identification string.
The identification string can be any suitable type of identi-
fication string and can include numbers, and/or characters,
and/or symbols. The identification string can be a serial
number, such as a serial number entered by a user following
purchase of a computer program. The identification string
can also be an identification of a local computer, such as for



US 9,836,730 B1

9

example a name or number or manufacturer hardware serial
number or serial number or any other suitable identification
of an installed instance of an operating system. The identi-
fication string can be a user name or an identification string
which represents a login by a particular user at a local
computer. The identification of a particular user can also be
used to identify a particular subscription account.

Example 5: Piracy Monetization

As noted above, one common method of marketing a
software product is to offer a trial version with full func-
tionality but only for a limited period of time, such as 30
days. In this example, a trial version of the computer
program is downloaded to a user’s computer. The installed
trial version may be a full featured framework of the
computer program, but after the trial period has expired, the
computer program reverts to a non-functional “viewer
mode” unless the user initiates an activation process. The
activation process may include, for example, contacting the
manufacturer and purchasing a perpetual license to the
computer program, obtaining a serial number and activation
key from the manufacturer or seller, and, upon entering the
serial number and activation key from a user interface in the
software, converting the trial version of the software into a
fully-functioning version. The activation may be performed
online through the seller’s web site, or may be conducted by
telephone.

In one embodiment of the invention, the installed soft-
ware product includes an in-product messaging (IPM) plat-
form that communicates with a feature server on the Internet
to determine what features are available to a user of the
particular installation of the computer program. In the pres-
ent example, the feature server can determine if the installed
computer program is legitimate or a pirated copy. If the
program is not legitimate, features can be turned off, such as,
for example, access to the fully functional version of the
program. Additionally, features can be provided for the
pirate to purchase a legitimate copy, thereby creating mon-
etary value for the software company.

Turning now to FIG. 3A, shown is a block diagram
collectively presenting a flow chart illustrating an exemplary
embodiment of a process 300 for software piracy moneti-
zation. The process 300 can be used to impede software
piracy and provide steps for the pirates to purchase legiti-
mate software. Similar to the process described in FIG. 2,
the process 300 includes a step 305 of providing a computer
readable non-transitory storage medium comprising a com-
puter readable code configured to run on a local computer
(101, FIG. 1) which is configured to perform a process of
impeding software piracy; and a step 310 of running or
executing the computer readable code on the local computer.

The process 300 further includes a step 315 of collecting
a hardware fingerprint of the local computer. The collection
ot hardware fingerprint data can be initiated by the computer
program, transparent to the user, and may include, for
example, identification of network cards, motherboards, and
the IP address of the local computer 101. Thus, the computer
program builds a unique identifier for identifying the local
machine 101. The step 315 of collecting a hardware finger-
print additionally may include gathering application-specific
data. In one non-limiting example, application-specific data
may include the serial number of the application that is
running; product key information; the license 1D that iden-
tifies the product; and product usage information, such as
how many times the application launched.

10

15

20

25

30

35

40

45

50

55

60

65

10

In one embodiment of the invention, the process 300 may
further include a step 320 of connecting the computer
program to a feature server (105, FIG. 1). The feature server
105, which may be a dedicated server, can identify by any
suitable means which particular installation of the computer
program is connecting to the server. For example, the feature
server 105 may collect the unique hardware fingerprint data
containing serial number and product key information, and
create a record unique to the local computer. The records can
be stored on the feature server.

The computer program can connect one or more times to
the feature server 105. In one example, the application
program pings the feature server on a scheduled basis, such
as every other day, with details about the local computer,
such as that provided in the hardware fingerprint. A new
record can be created with each communication, and can be
added to the previous records for each unique hardware
fingerprint. In this manner, a historical database can be
created with the usage history of the machine. In one
example, the IP address can be applied to a country lookup
table to determine from which country the computer pro-
gram is communicating (e.g., Germany, Russia, United
States, etc.). From this information, the language of the
application can be determined and added to the record.

The process 300 may further include a step 325 of
verifying the computer program is legitimate and not
pirated. In one embodiment of the invention, the serial
number of the installed software product is compared at a
step 330 against a database of all the (legitimate) serial
numbers already generated for that product. The database of
legitimate serial numbers may reside on the feature server,
the software company server, in the cloud, or at other
locations. If the serial number matches an entry in the
database, then it is known to be a legitimately issued serial
number. However, the validity check is not necessarily over,
as will be explained below. If the serial number does not
match any entry in the database, then the serial number is
assumed to be created fraudulently by a key generator or the
like and the status of the local computer is treated as a pirate
at a step 335.

Even though a serial number may have matched a legiti-
mate entry in the database at step 330, there is still a
possibility the software product is pirated. For example, the
serial number may have been “leaked” online to other
pirates via forums, shared through a torrent web site, etc.
Therefore, in one embodiment of the invention, a database
may be created that contains blacklisted serial numbers; that
is, those legitimate serial numbers that have been abused
and/or overused. Several methods are available to compile
the blacklisted serial numbers. For example, the feature
server could keep track of the number of times a particular
serial number was activated, or how many times it was
launched, or Internet searches could yield piracy web sites.
A threshold number of activations could be established
above which a serial number is considered to be pirated, for
example 100 or 1,000. At a step 340, the legitimate serial
number passed from step 330 is compared to the database of
blacklisted serial numbers and, if a match is found, then the
serial number is assumed to be fraudulent and the status of
the local computer is treated as a pirate at a step 335. The
blacklist database may reside on the feature server, the
software company server, in the cloud, on the local com-
puter, or at other locations. Locating the blacklist database
on the local computer may have certain advantages such as
not having to communicate with the feature server to run a
comparison. The feature server could periodically update the



US 9,836,730 B1

11

blacklist database, but the communication link would be
unnecessary to perform the comparison.

It no such match is found with the blacklist records at step
340, the serial number is deemed legitimate and no further
action is taken with respect to piracy. The software product
may wait a specified time period T at a step 345, such as two
days, then proceed to step 315 and collect data for the
hardware fingerprint of the local computer. In another
example, the time period T is the time between launches of
the software product. In other words, the hardware finger-
print data is collected and sent to the feature server whenever
the software program is launched. Under normal circum-
stances, the in-product messaging platform will send a
communication from the local computer (e.g., the computer
identity, the hardware fingerprint, the serial number, the IP
address, etc.) and in response the feature server will send
messages that are related to the specific software product
back to the computer program on the local machine. For
example, the in-product messaging platform may send what-
ever messaging or content the user is entitled to, including
product content, html content, messages, etc.

Turning now to FIG. 3B, if the local computer is deemed
a pirate, the feature server may send via the in-product
messaging platform a property feature record for that
installed computer program to arrange one or more configu-
rable features of the computer program as per the feature
property state information contained within the sent feature
record. For example, at a step 350 a message such as but not
limited to a custom cookie may be sent to the local computer
with the normal message content. At a step 355, the message
or custom cookie may activate a piracy user interface dialog
box 356 (FIG. 4) residing dormant in the software product.
The normal communication for getting the new messages
still takes place, but one of the messages is the piracy
message; it associates to the software product. In one
example, the piracy message is sent to all users, but only the
local machines with the custom cookie will take action on it.
The piracy message dialog box 356, when activated, may
alert the user that the software product may be pirated.
However, the user interface 356 displaying the dialog is not
displayed to the user unless the message has been sent to the
machine, and the cookie is present, for example. In this
manner, the message is used as a condition for the piracy
user interface dialog box.

In another example, a piracy message or dialog box may
be sent directly from the software company to the local
computer for display on the user’s screen.

The process 300 further includes a step 358 to offer the
user amnesty from the pirated software. The amnesty offer
may, for example, agree not to bring criminal charges in
exchange for the user purchasing a legitimate copy of the
product. To facilitate the amnesty offer, the piracy message
dialog box 356 may include a hyperlink to an online
purchase, or a telephone number for the user to call a retailer.
In this manner, the user of the pirated version is given the
opportunity to purchase a legitimate copy which, if acted on,
increases revenue for the manufacturer. When the user
purchases a legitimate serial number at a step 380, the
process 300 returns to step 315. In one embodiment of the
invention, the piracy warning user interface may be set to
display a limited number of times, such as three. Once the
threshold has been reached at a step 360, a more severe
action may be taken at a step 365.

If the user takes no action in step 355, at a step 365 a
second message dialog box 366 (such as that shown in FIG.
5) may be displayed that has an action 370 associated with
it. The piracy dialog box 366 notifies the user that the

25

40

45

12

software product is believed to be pirated, and that the
product has been reverted to an “expired trial,” meaning
there is no longer any functionality. Similar to the piracy
warning dialog box 355, the user of the pirated version is
given the opportunity to purchase a legitimate copy of the
product, uninstall the pirated version, and load a clean
legitimate version.

In one embodiment of the invention, the reversion of the
software product to “Expired Trial” (step 370) may be
carried out by utilizing the states available in the software
activation platform. The pirate typically loads a trial version
of the software, then uses a key generator or the like to
obtain a fraudulent serial number and activation code to
unlock the product. The activation platform includes a user
interface dialog box, or Trial UL, that states the time remain-
ing on the trial version: 30 days remaining, then 29, then 28,
etc. The Trial Ul may include a button or input field to enter
the serial number and activation code if the user legitimately
purchased the product previously, or over the phone. The
pirate circumvents the activation process by entering the
fraudulent serial number and activation code at this point.
This simulates the work flow of calling customer service,
paying the price of the software, and getting a new serial
number and activation code. In other words, the pirate is
using the key generator to shortcut or short circuit the
activation steps in the software work flow; it simulates that
the product communicated with the server and received an
activation code back. When the process 300 detects at step
355 that activation has been bypassed, steps are taken that
eventually result in the state of the activation being reverted
back to an expired product.

In some embodiments of the invention, the computer
program at a step 375 changes the displayed state of the Trial
UI (that allows entry of serial number and activation code)
to “hidden” or “never visible.” In this manner, the pirate is
prevented from entering a different fraudulent serial number
and activation key.

The pirate can be offered a second opportunity for
amnesty at a step 376. As in step 358, the piracy message
dialog box 376 may include a hyperlink to an online
purchase. In this manner, the user of the pirated version is
given the opportunity to purchase a legitimate copy which,
if acted on, increases revenue for the manufacturer. When
the user purchases a legitimate serial number at a step 380,
the process 300 returns to step 315.

One advantage of the disclosed process 300 is that the
data gathering and message sending functions are autono-
mous. That is, because they only rely on hardware and
software configurations for identification, the computer pro-
grams never learns the personal identity of the user, which
is beneficial for privacy concerns.

Further description of the software piracy monetization
process is provided in commonly owned U.S. Provisional
Application Ser. No. 61/861,358, filed Aug. 1, 2013, entitled
“SYSTEM AND METHOD FOR SOFTWARE PIRACY
MONETIZATION”, which application is incorporated
herein by reference in its entirety for all purposes.

While the present invention has been described with
reference to a number of specific embodiments, it will be
understood that the true spirit and scope of the invention
should be determined only with respect to claims that can be
supported by the present specification. Further, while in
numerous cases herein wherein systems and apparatuses and
methods are described as having a certain number of ele-
ments it will be understood that such systems, apparatuses
and methods can be practiced with fewer than the mentioned
certain number of elements. Also, while a number of par-



US 9,836,730 B1

13

ticular embodiments have been described, it will be under-
stood that features and aspects that have been described with
reference to each particular embodiment can be used with
each remaining particularly described embodiment.

What is claimed is:
1. A method for software validation comprising the steps
of:
providing a computer readable non-transitory storage
medium forming part of a local computer storing
computer readable code as a software product config-
ured to run on the local computer including at least a
microprocessor and a display, the software product
including one or more configurable features having a
feature property, the feature property having a state;

executing the computer readable code on the local com-
puter to run the software product;

collecting, during execution of the computer readable

code, hardware fingerprint data relating to the local
computer and including a serial number of the software
product that is running, product key information, a
license 1D that identifies the software product, or soft-
ware product usage information;

connecting, by the local computer, with a computer fea-

ture server and transmitting the hardware fingerprint
data to the computer feature server;

determining if the software product installation is legiti-

mate in dependence upon at least the hardware finger-
print data and legitimate software data stored upon the
computer feature server; and

upon determining the installed software product is not

legitimate sending a message to the local computer-
comprising instructions to change the state of a feature
property of the software product and generate an alert
for presentation to the user upon the display to alert a
user that the software product is not legitimate.

2. The method of claim 1, wherein the hardware finger-
print data further comprises a network card, a motherboard,
or an IP address of the local computer.

3. The method of claim 1, wherein the step of determining
if the software product is legitimate comprises comparing a
serial number of the software product against a database of
legitimate serial numbers already generated for that software
product.

4. The method of claim 1, wherein the step of determining
if the software product is legitimate comprises comparing a
serial number of the software product against a database of
blacklisted serial numbers stored upon the computer feature
server.

30

40

45

14

5. The method of claim 1, wherein the step of determining
if the software product is legitimate comprises comparing a
serial number of the software product against a database of
blacklisted serial numbers stored upon the computer feature
server, each blacklisted serial number comprises a legitimate
serial number of the software product that has been used in
software product installations more than a threshold number
of times.

6. The method of claim 5, wherein the threshold number
of times is greater than 100.

7. The method of claim 5, wherein the threshold number
of times is greater than 1,000.

8. The method of claim 1, wherein the step of determining
if the software product is legitimate is determined by the
feature server using the hardware fingerprint data.

9. The method of claim 1, wherein the instructions to
change the state of a feature property on the local computer
comprises changing a display state of a user interface for the
computer product on the local computer to not visible.

10. The method of claim 1, wherein

the alert is a piracy dialog box displayed upon the display

that warns the user that the software product may not be
legitimate; and

the alert is either contained within the software product

and activated by the message or contained within the
message.

11. The method of claim 1, wherein

the alert is a piracy dialog box displayed upon the display

that notifies the user that the state of the software
product has changed; and

the alert is either contained within the software product

and activated by the message or contained within the
message.

12. The method of claim 1, wherein the instructions to
change the state of a feature property on the local computer
comprise reverting the state of the software product to a trial
mode.

13. The method of claim 1, wherein the alert is a user
interface relating to an activation user interface or trial user
interface, and the display state for the computer product is
changed to not visible or hidden.

14. The method of claim 1, further comprising a step of
offering a legitimate version of the software product and an
amnesty to the user of a pirated version of the software
product upon their purchase of the legitimate version.

15. The method of claim 14, wherein the offer comprises
purchasing a license to the legitimate version of the software
product.



