1. Home >
  2. Extreme

SpaceX rocket carries the first ever zero-g 3D printer to the Space Station

Early Sunday morning, SpaceX mission CRS-4 lifted off from Cape Canaveral towards the International Space Station, carrying with it the first 3D printer that will operate in zero gravity. When the astronauts aboard the ISS use the 3D printer, they will become the first humans to ever manufacture goods away from planet Earth. It's not quite the Moon- or Mars-based factory that we've always dreamed of, but it's a very important first step towards manufacturing goods outside of Earth's gravity, and thus the eventual colonization and industrialization of the Solar System.
By Sebastian Anthony
Made In Space 3D printer, for the International Space Station

Early Sunday morning, SpaceX mission CRS-4 lifted off from Cape Canaveral towards the International Space Station, carrying with it the first 3D printer that will operate in zero gravity. When the astronauts aboard the ISS use the 3D printer, they will become the first humans to carry out off-world manufacturing. It's not quite the Moon- or Mars-based factory that we've always dreamed of, but it's a very important first step towards manufacturing goods outside of Earth's gravity, and thus the eventual colonization and industrialization of the Solar System.

The Dragon capsule, which launched aboard a Falcon 9 v1.1 rocket, is the fourth of SpaceX's minimum of 12 resupply missions to the ISS. It was carrying 4,885 pounds (2,215 kg) of cargo, including: the RapidScat instrument, which bounces microwaves off the ocean to measure wind speeds; the Kinetic Launcher for Orbital Payload Systems, for shooting mini satellites out into space; the Bone Densitometer (a reduction in bone density is one of the bigger risks of being an astronaut); and the first zero-gravity 3D printer.

Made In Space's 3D printerMade In Space's 3D printer. ( Read: What is 3D printing?

The 3D printer, which is part of the 3D Printing in Zero-G Experiment(Opens in a new window), was created by Californian company Made In Space(Opens in a new window). I hadn't heard of Made In Space before, but it seems like it's a small startup that was created for the sole purpose of sending 3D printers into space. It sounds like the zero-gravity 3D printer is much the same as your usual on-Earth 3D printer -- though it has been ruggedized to survive launch pressures, and it went through rigorous safety checks to ensure it can't harm the astronauts aboard the ISS. In a conventional 3D printer, gravity is typically used to hold layers in place as they're deposited -- but obviously the Made In Space 3D printer can't do that. (Sadly, the website doesn't say how it's done.)

The first Made In Space 3D printer will use ABS thermoplastic to perform additive manufacturing using standard fused deposition modelling (FDM) -- i.e. building objects up layer by layer with molten plastic. The second 3D printer, which is due to go up to the ISS sometime in 2015, will be capable of "higher temperature, stronger plastics" -- and perhaps most interestingly, this second printer will be an open platform that other companies and institutions can use, to carry out their own tests of 3D printing in spaaaaace.

The eventual plan is to install a 3D printer on the International Space Station that can manufacture new and replacement components on an as-needed basis. Additive manufacturing, as long as it actually works in zero-gravity, is perfect for such applications; it's faster, more efficient, and simply much easier to make the parts that you need on the ISS (or Mars), rather than repeatedly defeating Earth's gravity by burning millions of dollars of rocket fuel.

Made In Space, testing their 3D printer during a low-gravity test flightMade In Space, testing their 3D printer during a low-gravity test flight Read: NASA picks Boeing and SpaceX to bring manned space travel back to the US NASA J2-x rocket part, made with an SLM cusing 3D printerA 3D-printed metal J2-x rocket part, made by NASA's SLM cusing 3D printer.

3D printing with plastic is one thing, but the ultimate goal is to perform additive manufacturing with a whole range of materials -- most notably, aluminium, and other key metals used in aerospace applications. NASA has spent a lot of time over the last few years working on its additive manufacturing skills -- in 2012, it successfully 3D printed a metal rocket engine part. I'm not sure if such 3D-printing-with-metal techniques, such as selective laser melting (SLM), could be carried out on the ISS due to safety and power requirements -- but I suspect they're looking into it.

Ultimately, as NASA and other space agencies move towards sending humans to the Moon, asteroids, and Mars, advanced 3D printers are likely to play a key role in humanity's colonization of the Solar System. We've known for a long time that anything we can manufacture off-world -- tools, machined components, rocket fuel, water -- is a huge, huge step towards long-term human exploration of the cosmos. Sending large amounts of stuff up into space via rockets just isn't workable -- we either have to find another way of getting stuff into space (like the mythical space elevator, or fusion engines), or we have to make the stuff outside of Earth's gravity.

We'll be sure to report back in a few weeks, when the first plastic widgets and doodads are manufactured aboard the ISS.

Now read: 60,000 miles up: Space elevator could be built by 2035, says new study -- or NASA-funded fusion rocket could shoot humans to Mars in 30 days

Tagged In

Space Travel International Space Station Civilization 3d Printing 3d Printers

More from Extreme

Subscribe Today to get the latest ExtremeTech news delivered right to your inbox.
This newsletter may contain advertising, deals, or affiliate links. Subscribing to a newsletter indicates your consent to our Terms of use(Opens in a new window) and Privacy Policy. You may unsubscribe from the newsletter at any time.
Thanks for Signing Up