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What is a Safety Critical Program? 
 
The traditional definition of a safety-critical program is one in which human life depends 
on the correct operation of the program. If there is a bug in such a program, then death or 
serious injury can result. Typical examples are signaling systems on trains, avionics 
control systems, medical instrumentation, and space applications. Since the focus is on 
human safety, we apply requirements to such programs that essentially require that they 
be error free. 
 
That’s a strong requirement, especially given the common wisdom that all large programs 
contain serious errors. But in our modern technological age we place our safety at the 
mercy of computer software programs every time we board a train or plane, or enter a 
hospital, or even drive a car. We simply have to ensure the reliability of such programs, 
and as we will see in this paper, it is in fact possible and practical to achieve the 
seemingly very difficult goal of writing essentially error-free completely reliable 
software. 
 
Although we are definitely focusing on safety-critical software in this paper, it is worth 
noting that in our modern complex world, more and more critical functions depend on 
computers. For example, banks rely on programs for controlling the international 
financial system. People may not die directly as a consequence of major failures in this 
area, but there are still awful consequences if such systems fail. Similarly, much of our 
general infrastructure, including phones, the internet, water and electricity supplies, and 
many other critical needs of modern life are dependent on software. If we can indeed 
devise methods of writing completely reliable code, we can certainly find more 
applications for such techniques than traditional safety-critical programs encompass. 
 
One of our important theses in presenting this material is that all programmers should be 
aware of these techniques so that some appropriate subset of them can be applied much 
more widely. Almost no one will say that reliability is uninteresting for a planned 
software project. We may not be able to afford to make every application completely 
reliable, but for sure we can do a better job in the future in reaching this goal, and we can 
definitely extend the notion of high integrity systems beyond the domain of safety-critical 
programming alone. 
 
 

https://www.cmpevents.com/ESCw06/a.asp?option=C&V=11&SessID=1296


General Approaches and Observations 
 
We now have over fifty years of experience in writing large programs. During that period 
we have developed many techniques which can be refined to play a part in the design and 
implementation of safety-critical software. Perhaps the most important and fundamental 
requirement is that everyone involved in such a design effort must orient themselves to a 
disciplined view that is entirely quality-oriented. I once had a programmer working for 
me who said “It’s a waste of time worrying about whether a loop is one-off, since you 
will find out during testing anyway.” Such an attitude is the very antithesis of what we 
need if we are to succeed in writing reliable software. 
 
As I am sure many of you know, I am an enthusiastic Ada supporter, and I should 
disclose that right away, though what I have to say here is certainly not Ada specific, but 
I will say that one of the advantages of Ada in this area, apart from some important 
objective features, is that Ada was designed with this kind of quality orientation in mind, 
and the culture that surrounds Ada tends to have this emphasis. Even if you are not using 
Ada in a critical application, you will do well to borrow this kind of culture. 
 
This may seem like a trivial observation, but in my experience, the issue of culture and 
attitude is a critical one. If a team is totally dedicated to quality, it is far more likely to 
achieve its goal. Nevertheless, even the most dedicated team needs the tools and 
procedures that will help ensure success, and we will now examine some of the critical 
aspects that help ensure success in writing totally reliable programs. 
 
 

Programming Language Design 
 
In this section, we examine the influence of programming language design on the 
production of safety-critical software. First, we should start by noting that it is possible to 
do anything in any language. One can even prove that statement in some theoretical 
sense. However, we know from a lot of experience that programming language design is 
definitely significant and can affect the ease of writing programs.  
 
When it comes to writing error-free code, it is most certainly the case that we want all the 
help we can get, and to the extent that programming language design can help avoid 
errors, we definitely want that help. So let’s look at which languages need to provide in 
this area. 
 
As a starting point, we will note that C, and Java and C++ are not suitable languages for 
writing safety-critical software. And before you start thinking that these are peculiar 
statements from an Ada enthusiast, we rush to add Ada to the list of languages not 
suitable for safety-critical software. What do we mean by this rather outrageous 
statement? The point we are making is that all of these languages, in their entirety, are too 
complex to be used in this arena. We can’t let programmers use the full power of any of 
these languages; even C has too much functionality. The extended functionality of 



modern programming languages does make it easier to write code in the first place, but 
we have to worry about demonstrating that the resulting code is error-free. 
 
So what do we need to do? The answer is that for any of these languages we need to 
subset the language, so that we write our programs in a very well understood subset of 
the chosen language, which avoids unnecessarily complex semantics. For instance, in 
Ada, we most likely avoid using the full power of Ada tasking. In C, we exclude some of 
the C library routines which are unlikely to be available in a safety-critical environment. 
For C++ we avoid the complex use of templates. For Java, we avoid the use of dynamic 
features that allow the program to modify itself while it is running. (Of course, there are 
issues besides size that can interfere with a language’s ability to support safety-critical 
development.  For example, C has a number of error-prone features that can hinder a 
program’s readability.  If we see the construct “if (X=Y) …” are we sure that the 
programmer really meant to assign Y to X, and not compare the two for equality?) 
 
The exact choice of the set of features to be used is a challenging language design task, 
and the base language may be more or less helpful in this process. In the case of Ada for 
example, the built in notions of pragma Restrictions and pragma Profile make it much 
easier to specify and control the resulting profile. Two interesting examples of such 
language subset designs are MISRA C: 
 

www.misra-c2.com
 

and the SPARK Ada subset: 
 
 www.praxis-his.com/sparkada
 
about which we will have more to say later. These are examples which show how a 
coherent subset can be designed that makes the use of the language more effective for 
safety critical purposes. The MISRA group is currently busy designing a similar subset of 
C++ to be called MISRA C++. 
 
So what features should we look for in a language to be used for safety critical 
programming? Most obviously we want to favor compile time checking that can find as 
many problems as possible at compile time. Ada is an example of a language that is 
designed with this criterion in mind. Programmers learning Ada for the first time often 
comment that it is hard work to get the compiler to accept a program, but when it does, 
the program is far more likely to run correctly the first time. That characteristic may be a 
bit annoying for rushing out programs rapidly where reliability is not paramount, but for 
safety-critical programming it is just what we want. Ada achieves this partly by 
implementing a much more comprehensive type system, in which for example there are 
multiple integer types, and the compiler can check at compile time that you are not doing 
something that makes no sense like adding a length to a time. 
 

http://www.misra-c2.com/
http://www.praxis-his.com/sparkada


When we subset the language, we try to avoid aspects of the language which violate this 
important criterion, and as MISRA C shows, even a language which starts out with 
almost the opposite criterion can be improved considerably by careful subsetting. 
 
Another important issue is run time checking. Again, using Ada as an example, the Ada 
language defines many run time checks that are required to raise exceptions if they fail. 
As any Ada programmer knows, these checks and resulting exceptions are enormously 
valuable in finding errors in the early stage of testing, rather than later on in the 
development process. The issue of whether such checks should be enabled in the final 
product is an interesting one. On the one hand, we would prefer to demonstrate that a 
program is free of any possibility of run time errors. On the other hand, it provides an 
extra safety belt in case of a problem sneaking through our careful procedures. But for 
sure such run time checking is invaluable during the testing process. 
 
Though we have emphasized simplicity in language subset selection, we nevertheless 
have to recognize that safety-critical applications are getting more complex, and we have 
to be able to accommodate these requirements. We mentioned that the full tasking 
capabilities of Ada are probably not appropriate for safety-critical applications. However, 
support for multi-tasking is becoming more and more important. One of the important 
additions to Ada 2005 (the latest version of the Ada language) is the Ravenscar tasking 
profile which is specifically intended for safety-critical use: 
 

www.stsc.hill.af.mil/crosstalk/2003/11/0311dobbing.html
 

This provides an excellent introduction to this feature, with some useful insights into the 
design criteria and usage. Another interesting effort is the Java real-time development 
work. The original Java thread specification is inadequate, and this work aims to correct 
that. For details, see: 
 

www.embedded.com/showArticle.jhtml?articleID=16100316
 
The choice of language is always a hotly debated issue. We started out by noting that any 
problem can be solved in any language, and that is certainly true. Safety-critical 
applications have been written in many different languages. Nevertheless choice of 
language is important and it is no accident that Ada finds its widest use and support in the 
context of large safety-critical applications such as air traffic control. 
 

The Use of Formal Methods 
 
Given that we want to demonstrate that a program is completely reliable, a natural 
approach is to decide that we should prove the program correct in a mathematic sense. 
That way we won’t have to rely on testing or any other subjective measures. Some twenty 
years ago, the notion of proof of correctness was all the rage in academic circles, and still 
today there are academic computer scientists who assume that this is the solution to the 
problem of writing reliable code. 
 

http://www.stsc.hill.af.mil/crosstalk/2003/11/0311dobbing.html
http://www.embedded.com/showArticle.jhtml?articleID=16100316


What’s wrong with this viewpoint? Well most significantly, we have to figure out what 
correct means. The standard model is that we need a formal specification of the problem, 
and then we will prove that the program properly implements this formal specification. 
Unfortunately there is a huge hole in this approach. How do we come up with the formal 
specification? For small academic problems, like sorting an array of numbers, we can 
indeed write down a formal specification in an appropriate language and construct a 
mathematical proof that a given program meets this specification. In order to actually 
have confidence in the proof, we need to verify the proof using a mechanical process, but 
that is also quite feasible for small cases. 
 
But what of large applications? First of all there are aspects of large programs that are 
just not easy or even possible to formalize. For example, a pilot’s cockpit must present a 
user-friendly interface. The notion of user-friendly is hardly a formal one. Another 
problem is that for a large program, the specification is itself a huge document. 
Furthermore it is written in a formal specification language that may be harder for many 
people to read than a normal program in a conventional programming language. How do 
we know the specification is right? The answer is we don’t, and the problem of writing a 
reliable correct program has simply been transformed to the problem of writing a reliable 
correct specification. 
 
For these reasons, the notion of proving entire large applications correct has largely 
disappeared from view. That’s particularly true in the US, where typical academic 
programs are far more likely to offer courses in Unix Tools, and Web Programming than 
in formal logic and proof of correctness. 
 
So is this approach a dead end? Not at all! It is just that we have to recognize that proof 
techniques and the use of formal methods tools are not the only answer, but that does not 
mean they cannot play a very important part. In England, there is much more emphasis 
on formal methods. For example, the MoD standard for safety-critical programs requires 
the use of formal methods (although it is not very specific on what this means). So it is 
not surprising that to learn more about this approach, we should find that a British 
company, Praxis High Integrity Systems, is one of the leading practitioners in the area. 
For general details on this company, see: 
 

www.praxis-his.com
 

What Praxis is able to show is that although total proof of correctness may not be 
feasible, it is still very useful to be able to prove specific properties hold for a program. 
As an example, in Ada, there is a very clear definition of a set of run time conditions that 
cause exceptions to be raised. An exception in Ada generally corresponds to an error 
situation, and we certainly don’t want a critical program to contain such errors. The task 
of proving that a program is free of any possibility of exceptions is a well defined task, 
and has actually been achieved for non-trivial software. For details, see: 
 

www.praxis-his.com/pdfs/Industrial_strength.pdf
 

http://www.praxis-his.com/
http://www.praxis-his.com/pdfs/Industrial_strength.pdf


In order to construct such proofs, it is essential that the program be written in a relatively 
simple very well defined language. For this purpose, Praxis has designed SPARK, a 
subset of Ada, which is enhanced by the addition of static annotations, which for example 
say what variables can be accessed where. The SPARK Examiner tool verifies these 
conditions, and other Praxis tools allow the proof of specific properties of a program. 
Many other companies are also working in this area, but Praxis is definitely a leader in 
this area, and what we can learn from this is that the use of formal methods and proof 
tools is not just an academic exercise, but is useable in practice as an important tool in the 
arsenal of the safety-critical programmer. 
 

Testing, Testing, Testing 
 
If we cannot in practice prove all the properties that we need to demonstrate, how shall 
we ensure the safety of a program. One answer is given in the above title of this section. 
Now we are all taught the simple observation that testing can never show the absence of 
bugs, it can only show the presence of bugs. This is certainly true from a theoretical point 
of view, but still, we definitely trust a program that has been tested more than one that 
has not, and the more thorough the testing, the more we trust it. 
 
Can we in practice devise testing approaches that are sufficiently thorough that we are 
willing to literally risk our lives on the resulting demonstration that there are no known 
problems? That’s an enormously significant question. 
 
The DO-178B certification standard includes many aspects, but the most significant is a 
thorough testing approach that tries to answer this question affirmatively. It does this in a 
two-pronged approach. 
 
First, it specifies an approach for generating systematic functional tests. These tests must 
test all functional aspects of the program, at all levels of abstraction. The tests are derived 
in general terms from the problem statement and specification, and at a more detailed 
level from the actual code of the program to make sure that every detail of the logic 
works correctly. 
 
Then we insist that full coverage testing be done. This means that in our test suite every 
statement is executed at least once. That doesn’t guarantee anything, but we really don’t 
have much confidence in statements that have never been executed. This may seem like 
an obvious and simple observation and requirement, but in practice, most large non-
safety-critical programs are not tested in this way, even though tools are available for 
such testing. For example, the failure of the AT&T long lines system was due to the 
execution of error recovery software that had never been tested. 
 
The DO-178B standard has a number of different levels, corresponding to different 
requirements for safety. For level A certification, the highest level for the DO-178B 
standard and the one we associate with life-critical systems, there is an additional 
requirement regarding flow of control. Consider: 
 



 if condition then 
  statements 
 end if; 
 
Now here simple coverage testing will only ensure that the statements have been 
executed and it could be that the test suite always has condition set to true. That’s not 
really enough. We also want to know that if condition is false, it is safe to skip the 
statements. A more complicated example is 
 
 if condition1 and condition2 then 
  statements; 
 end if; 
 
Now here we really want to test various combinations of conditions to make sure that all 
possibilities are covered. But we don’t need to test all possible conditions. In particular, if 
condition1 is false then we don’t care about condition2, but we would like to test the 
following three cases: 
 
 condition 1 false 
 condition 1 true, condition 2 true 
 condition 1 true, condition 2 false 
 
The testing regime that ensures this is called MC/DC (modified condition/decision 
coverage), and there are tools to enforce the requirement that the set of tests include all 
cases. For additional information on this approach, see: 
 

www.dsl.uow.edu.au/~sergiy/MCDC.html
 

which contains a very thorough bibliography on this technique. 
 
One interesting issue is whether to apply the coverage testing to the source or the object 
code. We can’t fully trust compilers because they are far too complex to be themselves 
fully certified (or “qualified as development tools”, in DO-178B parlance). So what 
should we do? There are two approaches. We can either do all testing at the object code 
level. This is for example, the approach used by the Verocel tools, see: 
 

www.verocel.com/do178b.htm
  
for details on this approach. The other approach is to do coverage at the source program 
level, but in this case it is necessary to establish full traceability between the source 
program and object program. Both approaches have been used successfully, and both 
have their advocates (we have seem some fierce arguments between these two schools of 
thought in some of the projects we have worked on). 
 
One important aspect of DO-178B is that it is not simply a mindless set of objective 
rules. At the heart of the process is a human exercising judgment. These DERs 

http://www.dsl.uow.edu.au/~sergiy/MCDC.html
http://www.verocel.com/do178b.htm


(Designated Engineering Representatives) are independent authorities whose job it is to 
make sure the rules have been followed to the letter and in spirit. They are the “building 
inspectors” of the critical software engineering industry, and their extensive experience 
helps to make sure that the standard works in practice. 
 
How well does the testing regime that DO-178B imposes work? The pragmatic answer is 
that it is pretty successful. Remember that we don’t really require software to be 100% 
guaranteed to be totally error free. Rather we want to make sure that we can write 
software that is reliable enough so that it is not the weak link in the chain. If we take 
commercial avionics as an example, many lives have been lost due to various hardware 
failures on scheduled commercial flights, but no lives have been lost (as far as we can 
determine) as a result of software bugs in this arena. That’s a pretty impressive record. Of 
course there can always be a first time, but so far we have done pretty well. 
 
That does not mean we are content with the current state of affairs. We are working hard 
on improving our understanding of formal techniques, so we can use proof techniques 
more effectively. We are working on improving our programming languages so that they 
make it easier to write reliable programs, and we are improving our testing approaches. 
For example, the current work on DO-178C is addressing the issue of object oriented 
techniques, which we examine in more detail in the next section. Still, we are doing 
pretty well. Often you will hear people say that our software technology is terrible and all 
big programs contains serious bugs. Well that may be true of some areas, and for 
example we worry a lot about automobiles, where safety standards have not caught up 
with the increasing use of computers in cars. But in areas where we apply strict 
certification standards, we have a string of successes. 
 
Of course we can’t cover the DO-178B standard in detail here, but we have outlined 
some of its important features. For further details on this standard, a good source is: 
 
 www.software.org/quagmire/descriptions/rtcado-178b.asp
 
There are many other resources on the net, that describe approaches that various vendors 
have taken in meeting the requirements of this standard. 
 

The use of Tools 
 
When we are aiming at perfection, we need to take full advantage of all the tools at our 
disposal. We can achieve a lot by careful reading of programs with software experts 
doing the reading, but often we do even better by using automated tools to help with this 
process. There are many general categories of such tools. 
 
Static analysis tools analyze the structure of a program to detect errors and to provide 
information that will help find problems before they cause trouble. An example of such a 
tool is CodeSonar from Grammatech: 
 

www.grammatech.com/products/codesonar/overview.html

http://www.software.org/quagmire/descriptions/rtcado-178b.asp
http://www.grammatech.com/products/codesonar/overview.html


 
This tool automatically finds errors such as buffer overruns in C++ programs. There are 
many such tools from many suppliers. Of course no tools of this kind can guarantee that 
your program is correct, but everything we do helps to increase our confidence, and it is 
the sum total of this information and effort that leads us to be willing to get on the plane 
that will be deploying our software at the end of the process. Choosing an appropriate set 
of tools and developing experience in their use can be as important as language and 
compiler selection. Note that the tool set is also likely to be language dependent. For 
example, in Ada we are less concerned with the buffer overflow problem, since the built-
in exception mechanism will detect any such problems. 
 
Compiler vendors often provide useful suites of such tools, and evaluation of the full tool 
suite should be an important part of the evaluation of languages and compilers. For 
example, our company, AdaCore provides a complete suite of tools. One such useful tool 
is a static stack usage analyzer that addresses the one specific requirement that a program 
does not overflow any stacks. 
 
There are many different kinds of tools for analyzing such properties as schedulability, 
worst-case timing, run-time use of storage, freedom from race conditions, freedom from 
unwanted side effects, automated testing, metrics etc. An important part of the 
preparation for a project aiming at a high-integrity product is to investigate and acquire a 
coherent set of tools. The use of integrated development environments is often a useful 
way of organizing such a set of tools. For example, the GNAT Programming Studio 
(GPS) product from AdaCore provides a convenient way of organizing a wide variety of 
tools in a coherent manner, and there are many other such products. 
 

Object Oriented Programming and Safety Critical Systems 
 
Object oriented programming methods have become an important part of the arsenal of 
tools in the hands of a modern programmer, and a wide variety of languages support 
these notions (C++, Java, Ada and many others). In this section we will look at the 
special considerations of using these methods in a safety critical environment. 
 
The notion of OO programming is a little ill-defined. On the one hand it refers to a design 
method in which objects communicate via message passing. Such a design method in and 
of itself poses no special problems or safety concerns. On the other hand, it refers to the 
use of a set of features in programming languages, originally conceived to facilitate the 
use of the object oriented design approach, but more widely useable for many purposes. 
This set of features typically comprises three important components: 
 

• The ability to extend existing types by adding new data elements 
• Automatic inheritance of existing methods when types are extended, along 

with the ability to override such methods and/or add new ones 
• Dynamic dispatching, allowing automatic choice of the right object 

 



The first two features offer no special obstacles in a safety critical environment, and it is 
worth noticing that the use of these two features is helpful even without dynamic 
dispatching. For example, a type and associated functions (methods) may be defined in a 
library. The program can then import this type, extend it to specialize it for a particular 
application, and then use the inherited operations on this type. In Ada, this useful set of 
capabilities is recognized by the provision of a pragma No_Dispatch, whose purpose is 
precisely to check that a program does not use dynamic dispatching. An Ada compiler 
can recognize this pragma, and enforce the restriction, as well as improving the code 
knowing that this restriction is in place (for example, by eliminating dispatch tables). 
Similar switches or pragmas could be implemented in other languages, though they are 
not part of the standard. 
 
Now let’s look at dynamic dispatching. This offers a challenge. The problem is two-fold. 
First a typical implementation is to have a table of pointers and then index into this table. 
That’s a bit worrisome. What if the table gets clobbered some how? The dispatching 
operation can cause a wild jump. Now of course we don’t expect any such clobbering in a 
certified program (although the demonstration of correctness of the dispatch table raises 
some nontrivial issues). Still indirect calls make us nervous, since now to ensure the 
integrity of the control flow we have to prove properties relating to data access. 
 
The second problem is more significant. In a sense dynamic dispatching is all about not 
having to know what routine you are calling. But certification and coverage testing is all 
about knowing and checking the control flow of a program. What exactly are we 
supposed to check when we see a dispatching call. 
 
One possibility would be to treat each call as though it were a case statement with 
branches going to every possible function that corresponds to the dispatching call. This 
seems like a completely fair translation, but the trouble is that in a real program, we 
might easily find that most calls can only go to a small subset of the possible targets. 
Then we end up with a lot of deactivated code (code that can never be executed), and we 
have trouble testing such cases, or proving that they can never occur. 
 
A simpler approach is to treat the dispatching call as a call to a single routine that 
contains such a case statement. In this approach all calls to a given dispatching function 
will share a single case statement. On the positive side, we argue that we could have 
written the program this way in the first place, and traditional testing would have been 
fine, so it should be fine here. On the negative side, we worry that our coverage testing is 
only showing that each method is used somewhere, and we are not really verifying the 
possible flows of control. 
 
The fact that we could have written the program that way is not decisive. The testing 
schemes we have described are not perfect, no testing scheme is perfect, but they work 
pretty well in practice. However, they can be subverted by a programmer concentrating 
on the letter of the standard, and ignoring its intent. Here is a way of essentially removing 
all if statements from a program. Given: 
 



 if condition then 
     then-statements 
  else 
     else-statements 
 end if; 
 
we replace this with: 
 
 Eval_If (condition, then-statements-proc’access, else-statements-proc’access); 
 
Where the second and third arguments are now pointers to functions that if called will 
execute the appropriate statements. Now Eval_If itself looks like: 
 
 procedure Eval_If (Cond : Boolean; T, E : access procedure) is 
 begin 
  if Cond then 
   T.all; 
  else 
   E.all; 
  end if; 
 end; 
 
Here the .all notation calls the relevant procedure when the condition is met. Now we 
have only one if statement in the entire program, the one inside this routine. Our 
conventional coverage approach, where the MC/DC protocol tries hard to ensure that all 
conditionals are tested thoroughly is now subverted, and our coverage now only proves 
that some if somewhere is true and some if somewhere is false. 
 
Well this is pretty clearly cheating. Even though it meets the letter of the certification 
law, it does not meet the spirit, and we suspect no DER will let this or any similar 
subversion sneak by. 
 
So here is the question, is the conversion of dispatching calls to a single shared case 
statement cheating? We don’t really know the answer to this yet. We need more 
experience. At least one program has been certified using this approach as far as we 
understand, but other programs are worrying a lot about this issue, and the lesson to be 
learned here is that dynamic dispatching is best avoided if possible in high integrity 
applications that are to be certified, and if they can’t be avoided, you need to worry about 
these issues, and follow the evolving state of the art in this area. 
 
For information on the development of the follow on DO-178C standard, see 
 

www.rtca.org/CMS_DOC/Original%20TOR%20mod.PDF
 

There is a lot of work being done in this area. An excellent summary that deals with the 
whole issue of certification of object oriented software can be found in: 

http://www.rtca.org/CMS_DOC/Original TOR mod.PDF


 
www.faa.gov/aircraft/air_cert/design_approvals/air_software/oot/
 

This references a four volume set “Handbook for Object Oriented Technology in 
Aviation” that is a must-read reference for anyone considering the use of object oriented 
techniques in safety-critical programs. 
 

Conclusion 
 
As we have noted earlier, the certification of safety-critical software is at this stage a well 
understood activity, and has allowed us to repeatedly produce large scale reliable 
systems. This technology will continue to improve in the future. Now not every one is 
working on safety critical systems. However, as we noted at the start of this paper, nearly 
everyone is in favor of reliable software, and it seems to us that many of the techniques 
that have been developed in the safety critical area deserve wider use. When ebay went 
down for nearly a week at one point due to software problems, causing the valuation of 
the company to lose several billion dollars, I wrote a note to the founders of ebay 
suggesting that since they had a huge company depending on one relatively straight-
forward program, it would make sense to adopt a much more strenuous view of reliability 
in this case. Lives were not at stake, but a few billion dollars is real money! I did not 
receive a reply, but I think in future that we will come to demand a level of reliability and 
security in a wide variety of critical programs. 

http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/oot/

