Abstract
The functions of macrophages that lead to effective host responses are critical for protection against Staphylococcus aureus. Deep tissue-invading S. aureus initially countered by macrophages trigger macrophage accumulation and induce inflammatory responses through surface receptors, especially toll-like receptor 2 (TLR2). Here, we found that macrophages formed sporadic aggregates in the liver during infection. Within those aggregates, macrophages co-localized with T cells and were indispensable for their infiltration. In addition, we have focused on the mechanisms underlying the polarization of macrophages in Forkhead box transcription factor O1 (FoxO1) conditional knockout Lys Cre/+ FoxO1 fl/fl mice following S. aureus infection and report herein that macrophage M1-M2 polarization via TLR2 is intrinsically regulated by FoxO1. Indeed, for effective FoxO1 activity, stimulation of TLR2 is essential. However, following S. aureus challenge, there was a decrease in macrophage FoxO1, with increased phosphorylation of FoxO1 because of TLR2-mediated activation of PI3K/Akt and c-Raf/MEK/ERK pathway. Following infection in Lys Cre/+ FoxO1 fl/fl mice, mice became more susceptible to S. aureus with reduced macrophage aggregation in the liver and attenuated Th1 and Th17 responses. FoxO1 abrogation reduced M1 pro-inflammatory responses triggered by S. aureus and enhanced M2 polarization in macrophages. In contrast, overexpression of FoxO1 in macrophages increased pro-inflammatory mediators and functional surface molecule expression. In conclusion, macrophage FoxO1 is critical to promote M1 polarization and maintain a competent T cell immune response against S. aureus infection in the liver. FoxO1 regulates macrophage M1-M2 polarization downstream of TLR2 dynamically through phosphorylation.







Similar content being viewed by others

References
Altman DR, Sebra R, Hand J, Attie O, Deikus G, Carpini KW, Patel G, Rana M, Arvelakis A, Grewal P, Dutta J, Rose H, Shopsin B, Daefler S, Schadt E, Kasarskis A, van Bakel H, Bashir A, Huprikar S (2014) Transmission of methicillin-resistant Staphylococcus aureus via deceased donor liver transplantation confirmed by whole genome sequencing. Am J Transplant: Off J Am Soc Transplant Am Soc Transplant Surg 14(11):2640–2644. doi:10.1111/ajt.12897
Florescu DF, McCartney AM, Qiu F, Langnas AN, Botha J, Mercer DF, Grant W, Kalil AC (2012) Staphylococcus aureus infections after liver transplantation. Infection 40(3):263–269. doi:10.1007/s15010-011-0224-3
Takatsuki M, Eguchi S, Yamanouchi K, Hidaka M, Soyama A, Miyazaki K, Tajima Y, Kanematsu T (2010) The outcomes of methicillin-resistant Staphylococcus aureus infection after living donor liver transplantation in a Japanese center. J Hepatobiliary Pancreat Sci 17(6):839–843. doi:10.1007/s00534-010-0273-5
Lezcano-Gort LE, Calderon-Pecellin A, Anton-Martinez J (2013) Methicillin resistant Staphylococcus aureus liver abscess related with colorectal cancer. Revista espanola de enfermedades digestivas: organo oficial de la Sociedad Espanola de Patologia Digestiva 105(9):569–570
Ikuta S, Tanimura K, Yasui C, Aihara T, Yoshie H, Iida H, Beppu N, Kurimoto A, Yanagi H, Mitsunobu M, Yamanaka N (2011) Chronic liver disease increases the risk of linezolid-related thrombocytopenia in methicillin-resistant Staphylococcus aureus-infected patients after digestive surgery. J Infect Chemother: Off J Jpn Soc Chemother 17(3):388–391. doi:10.1007/s10156-010-0188-8
Jana T, Machicado JD, Davogustto GE, Pan JJ (2014) Methicillin-resistant Staphylococcus aureus prostatic abscess in a liver transplant recipient. Case Rep Transplant 2014:854824. doi:10.1155/2014/854824
Lin L, Ibrahim AS, Xu X, Farber JM, Avanesian V, Baquir B, Fu Y, French SW, Edwards JE Jr, Spellberg B (2009) Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog 5(12):e1000703. doi:10.1371/journal.ppat.1000703
McLoughlin RM, Lee JC, Kasper DL, Tzianabos AO (2008) IFN-gamma regulated chemokine production determines the outcome of Staphylococcus aureus infection. J Immunol 181(2):1323–1332
Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, Fujikado N, Tanahashi Y, Akitsu A, Kotaki H, Sudo K, Nakae S, Sasakawa C, Iwakura Y (2009) Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30(1):108–119. doi:10.1016/j.immuni.2008.11.009
Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, Migaud M, Israel L, Chrabieh M, Audry M, Gumbleton M, Toulon A, Bodemer C, El-Baghdadi J, Whitters M, Paradis T, Brooks J, Collins M, Wolfman NM, Al-Muhsen S, Galicchio M, Abel L, Picard C, Casanova JL (2011) Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332(6025):65–68. doi:10.1126/science.1200439
Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, Magorien JE, Blauvelt A, Kolls JK, Cheung AL, Cheng G, Modlin RL, Miller LS (2010) IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest 120(5):1762–1773. doi:10.1172/JCI40891
Sica A, Invernizzi P, Mantovani A (2014) Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology 59(5):2034–2042. doi:10.1002/hep.26754
Biswas SK, Chittezhath M, Shalova IN, Lim JY (2012) Macrophage polarization and plasticity in health and disease. Immunol Res 53(1–3):11–24. doi:10.1007/s12026-012-8291-9
Takeuchi O, Hoshino K, Akira S (2000) Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 165(10):5392–5396
Hanke ML, Angle A, Kielian T (2012) MyD88-dependent signaling influences fibrosis and alternative macrophage activation during Staphylococcus aureus biofilm infection. PLoS One 7(8):e42476. doi:10.1371/journal.pone.0042476
Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795. doi:10.1172/JCI59643
Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90. doi:10.1126/science.1219179
Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14(6):392–404. doi:10.1038/nri3671
Sieweke MH, Allen JE (2013) Beyond stem cells: self-renewal of differentiated macrophages. Science 342(6161):1242974. doi:10.1126/science.1242974
Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, Greter M, Mortha A, Boyer SW, Forsberg EC, Tanaka M, van Rooijen N, Garcia-Sastre A, Stanley ER, Ginhoux F, Frenette PS, Merad M (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38(4):792–804. doi:10.1016/j.immuni.2013.04.004
Zigmond E, Samia-Grinberg S, Pasmanik-Chor M, Brazowski E, Shibolet O, Halpern Z, Varol C (2014) Infiltrating monocyte-derived macrophages and resident Kupffer cells display different ontogeny and functions in acute liver injury. J Immunol 193(1):344–353. doi:10.4049/jimmunol.1400574
Bleriot C, Dupuis T, Jouvion G, Eberl G, Disson O, Lecuit M (2015) Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42(1):145–158. doi:10.1016/j.immuni.2014.12.020
Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36(6):320–328. doi:10.1016/j.tibs.2011.03.006
Zhang W, Patil S, Chauhan B, Guo S, Powell DR, Le J, Klotsas A, Matika R, Xiao X, Franks R, Heidenreich KA, Sajan MP, Farese RV, Stolz DB, Tso P, Koo SH, Montminy M, Unterman TG (2006) FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem 281(15):10105–10117. doi:10.1074/jbc.M600272200
Kawano Y, Nakae J, Watanabe N, Fujisaka S, Iskandar K, Sekioka R, Hayashi Y, Tobe K, Kasuga M, Noda T, Yoshimura A, Onodera M, Itoh H (2012) Loss of Pdk1-Foxo1 signaling in myeloid cells predisposes to adipose tissue inflammation and insulin resistance. Diabetes 61(8):1935–1948. doi:10.2337/db11-0770
Senokuchi T, Liang CP, Seimon TA, Han S, Matsumoto M, Banks AS, Paik JH, DePinho RA, Accili D, Tabas I, Tall AR (2008) Forkhead transcription factors (FoxOs) promote apoptosis of insulin-resistant macrophages during cholesterol-induced endoplasmic reticulum stress. Diabetes 57(11):2967–2976. doi:10.2337/db08-0520
Fan W, Morinaga H, Kim JJ, Bae E, Spann NJ, Heinz S, Glass CK, Olefsky JM (2010) FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages. EMBO J 29(24):4223–4236. doi:10.1038/emboj.2010.268
Brown J, Wang H, Suttles J, Graves DT, Martin M (2011) Mammalian target of rapamycin complex 2 (mTORC2) negatively regulates Toll-like receptor 4-mediated inflammatory response via FoxO1. J Biol Chem 286(52):44295–44305. doi:10.1074/jbc.M111.258053
Feig JE, Shang Y, Rotllan N, Vengrenyuk Y, Wu C, Shamir R, Torra IP, Fernandez-Hernando C, Fisher EA, Garabedian MJ (2011) Statins promote the regression of atherosclerosis via activation of the CCR7-dependent emigration pathway in macrophages. PLoS One 6(12):e28534. doi:10.1371/journal.pone.0028534
Kerdiles YM, Beisner DR, Tinoco R, Dejean AS, Castrillon DH, DePinho RA, Hedrick SM (2009) Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat Immunol 10(2):176–184. doi:10.1038/ni.1689
Dong G, Wang Y, Xiao W, Pacios Pujado S, Xu F, Tian C, Xiao E, Choi Y, Graves DT (2015) FOXO1 regulates dendritic cell activity through ICAM-1 and CCR7. J Immunol 194(8):3745–3755. doi:10.4049/jimmunol.1401754
Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116(6):1494–1505. doi:10.1172/JCI26498
Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423(6939):550–555. doi:10.1038/nature01667
Nakae J, Biggs WH 3rd, Kitamura T, Cavenee WK, Wright CV, Arden KC, Accili D (2002) Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat Genet 32(2):245–253. doi:10.1038/ng890
Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs WH 3rd, Wright CV, White MF, Arden KC, Accili D (2002) The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest 110(12):1839–1847. doi:10.1172/JCI16857
Nakae J, Kitamura T, Kitamura Y, Biggs WH 3rd, Arden KC, Accili D (2003) The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell 4(1):119–129
Wang T, Ge Y, Xiao M, Lopez-Coral A, Azuma R, Somasundaram R, Zhang G, Wei Z, Xu X, Rauscher FJ 3rd, Herlyn M, Kaufman RE (2012) Melanoma-derived conditioned media efficiently induce the differentiation of monocytes to macrophages that display a highly invasive gene signature. Pigment Cell Melanoma Res 25(4):493–505. doi:10.1111/j.1755-148X.2012.01005.x
McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF (2013) Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci U S A 110(43):17253–17258. doi:10.1073/pnas.1308887110
Svensson J, Jenmalm MC, Matussek A, Geffers R, Berg G, Ernerudh J (2011) Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J Immunol 187(7):3671–3682. doi:10.4049/jimmunol.1100130
Ploeger DT, Hosper NA, Schipper M, Koerts JA, de Rond S, Bank RA (2013) Cell plasticity in wound healing: paracrine factors of M1/M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun Signal: CCS 11(1):29. doi:10.1186/1478-811X-11-29
Xu F, Kang Y, Zhang H, Piao Z, Yin H, Diao R, Xia J, Shi L (2013) Akt1-mediated regulation of macrophage polarization in a murine model of Staphylococcus aureus pulmonary infection. J Infect Dis 208(3):528–538. doi:10.1093/infdis/jit177
Krysko O, Holtappels G, Zhang N, Kubica M, Deswarte K, Derycke L, Claeys S, Hammad H, Brusselle GG, Vandenabeele P, Krysko DV, Bachert C (2011) Alternatively activated macrophages and impaired phagocytosis of S. aureus in chronic rhinosinusitis. Allergy 66(3):396–403. doi:10.1111/j.1398-9995.2010.02498.x
Spaan AN, Surewaard BG, Nijland R, van Strijp JA (2013) Neutrophils versus Staphylococcus aureus: a biological tug of war. Annu Rev Microbiol 67:629–650. doi:10.1146/annurev-micro-092412-155746
Gresham HD, Lowrance JH, Caver TE, Wilson BS, Cheung AL, Lindberg FP (2000) Survival of Staphylococcus aureus inside neutrophils contributes to infection. J Immunol 164(7):3713–3722
Stapels DA, Ramyar KX, Bischoff M, von Kockritz-Blickwede M, Milder FJ, Ruyken M, Eisenbeis J, McWhorter WJ, Herrmann M, van Kessel KP, Geisbrecht BV, Rooijakkers SH (2014) Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors. Proc Natl Acad Sci U S A 111(36):13187–13192. doi:10.1073/pnas.1407616111
Voyich JM, Vuong C, DeWald M, Nygaard TK, Kocianova S, Griffith S, Jones J, Iverson C, Sturdevant DE, Braughton KR, Whitney AR, Otto M, DeLeo FR (2009) The SaeR/S gene regulatory system is essential for innate immune evasion by Staphylococcus aureus. J Infect Dis 199(11):1698–1706. doi:10.1086/598967
Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, Miao L, Tothova Z, Horner JW, Carrasco DR, Jiang S, Gilliland DG, Chin L, Wong WH, Castrillon DH, DePinho RA (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128(2):309–323. doi:10.1016/j.cell.2006.12.029
Acknowledgments
We would like to thank the staff of the Experimental Animal Center (USTC) for animal care. We thank the staff of the Core Facility Center for Life Sciences (USTC) for the help with the confocal microscope. We thank Dr. Bin Gao (NIH, Bethesda, Maryland) who kindly donated the Lys Cre/+ mice. We are grateful to Min Wu (North Dakota State University, Fargo, ND) for helpful discussions and reading of the manuscript.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Ethical Approval
All procedures performed in studies involving animals were in accordance with the guidelines outlined in the Guide for the Care and use of Laboratory Animals, Laboratory Animal Center, School of Life Sciences, University of Science and Technology of China. The animal protocol was approved by The Institutional Animal Use and Care Committee of University of Science and Technology of China (Animal ethics approval number USTCACUC1501009). Every effort was made to avoid or minimize suffering and to improve animal welfare.
Conflict of Interest
The authors declare that they have no competing interests.
Financial Support
Financial support was provided by the National Basic Research Program of China (973 Program-2013CB944900), the National Natural Science Foundation of China (81130058, 81430034, 91542123), and the Research Fund for the Doctoral Program of Higher Education of China (RFDP 20133402110015).
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
Electronic supplementary material includes five supplementary figures and corresponding figure captions and can be found in separate supplementary material file. (PPTX 756 kb)
Rights and permissions
About this article
Cite this article
Wang, YC., Ma, HD., Yin, XY. et al. Forkhead Box O1 Regulates Macrophage Polarization Following Staphylococcus aureus Infection: Experimental Murine Data and Review of the Literature. Clinic Rev Allerg Immunol 51, 353–369 (2016). https://doi.org/10.1007/s12016-016-8531-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12016-016-8531-1