
Further scramblings of Marsaglia’s xorshift
generatorsI

Sebastiano Vigna

Università degli Studi di Milano, Italy

Abstract

xorshift* generators are a variant of Marsaglia’s xorshift generators that
eliminate linear artifacts typical of generators based on Z/2Z-linear operations
using multiplication by a suitable constant. Shortly after high-dimensional
xorshift* generators were introduced, Saito and Matsumoto suggested a dif-
ferent way to eliminate linear artifacts based on addition in Z/232Z, leading to
the XSadd generator. Starting from the observation that the lower bits of XSadd
are very weak, as its reverse fails several statistical tests, we explore variants
of XSadd using 64-bit operations, and describe in detail xorshift128+, an ex-
tremely fast generator that passes strong statistical tests using only three shifts,
four xors and an addition.

1. Introduction

xorshift generators are a simple class of pseudorandom number generators
introduced by Marsaglia (2003). While it is known that such generators have
some deficiencies (Panneton and L’Ecuyer, 2005), the author has shown recently
that high-dimensional xorshift* generators, which scramble the output of a
xorshift using multiplication by a constant, pass the strongest statistical tests
of the TestU01 suite (L’Ecuyer and Simard, 2007).

Shortly after the introduction of high-dimensional xorshift* generators,
Saito and Matsumoto (2014) proposed a different way to eliminate linear arti-
facts: instead of multiplying the output of the underlying xorshift generator
(based on 32-bit shifts) by a constant, they add it (in Z/232Z) with the previous
output. Since the sum in Z/232Z is not linear over Z/2Z, the result should be
free of linear artifacts.

Their generator XSadd has 128 bits of state and full period 2128−1. However,
while XSadd passes BigCrush, its reverse fails the LinearComp, MatrixRank,
MaxOft and Permutation test of BigCrush, which highlights a significant weak-
ness in its lower bits.

IThis work has been supported by a Google Focused Research Award.

Preprint submitted to Elsevier November 3, 2017

In this paper, leveraging the theoretical and experimental data about xorshift
generators contained in (Vigna, 2016), we study xorshift+, a family of gener-
ators based on the idea of XSadd, but using 64-bit operations. In particular, we
propose a tightly coded xorshift128+ generator that does not fail any test from
the BigCrush suite of TestU01 (even reversed) and generates 64 pseudorandom
bits in 1.06 ns on an Intel R© CoreTM i7-4770 CPU @3.40GHz (Haswell). It is
the fastest full-period generator we are aware of with such empirical statistical
properties, making it an excellent drop-in substitute for the low-dimensional
generators found in many programming languages

Indeed, Google has recently chosen to use xorshift128+ as the PRNG of its
Javascript engine V8,1 which powers the Chrome browser. Immediately after,
Firefox and Safari made the same choice, making xorshift128+ one of the most
widely deployed PRNGs.

The software used to perform the experiments described in this paper is
distributed by the author under the GNU General Public License. Moreover,
all files generated during the experiments are available from the author.2

2. xorshift generators

The basic idea of xorshift generators is that the state is modified by ap-
plying repeatedly a shift and an exclusive-or (xor) operation. In this paper we
consider 64-bit shifts and states made of 2n bits, with n ≥ 7. We usually append
n to the name of a family of generators when we need to restrict the discussion
to a specific state size.

In linear-algebra terms, if L is the 64× 64 matrix on Z/2Z that effects a left
shift of one position on a binary row vector (i.e., L is all zeroes except for ones
on the principal subdiagonal) and if R is the right-shift matrix (the transpose
of L), each left/right shift/xor can be described as a linear multiplication by(
I + Ls

)
or
(
I +Rs

)
, respectively, where s is the amount of shifting.3

As suggested by Marsaglia (2003), we use always three low-dimensional 64-
bit shifts, but locating them in the context of a larger block matrix of the form4

M =


0 0 0 · · · 0 (I + La)(I +Rb)
I 0 0 · · · 0 0
0 I 0 · · · 0 0
0 0 I · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · I (I +Rc)

 .

1http://v8project.blogspot.it/2015/12/theres-mathrandom-and-then-theres.html
2http://prng.di.unimi.it/
3A more detailed study of the linear algebra behind xorshift generators can be found

in (Marsaglia, 2003; Panneton and L’Ecuyer, 2005).
4We remark that XSadd uses a slightly different matrix, in which the bottom right element

is 1 + Lc.

2

It is useful to associate with a linear transformation M its characteristic poly-
nomial

P (x) = det(M − xI).

The associated generator has maximum-length period if and only if P (x) is
primitive over Z/2Z. This happens if P (x) is irreducible and if x has maximum
period in the ring of polynomial over Z/2Z modulo P (x).

The weight of P (x) is the number of terms in P (x), that is, the number of
nonzero coefficients. It is considered a good property for generators of this kind
that the weight is close to n/2, that is, that the polynomial is neither too sparse
nor too dense (Compagner, 1991).

3. xorshift+ generators

It is known that xorshift generators exhibit a number of linear artifacts,
which results in failures in TestU01 tests like MatrixRank, LinearComp and
HammingIndep. Nonetheless, very little is necessary to eliminate such artifacts:
Marsaglia (2003) suggested multiplication by a constant, which is the approach
used by xorshift* (Vigna, 2016), or combination with an additive Weyl gen-
erator, which is the approach used by Brent (2007) in his xorgens generator.

The approach of XSadd can be thought of as a further simplification of the
Weyl generator idea: instead of keeping track of a separate generator, XSadd
adds (in Z/232Z) consecutive outputs of an underlying xorshift generator. In
this way, we introduce a nonlinear operation without enlarging the state. In
practice, this amounts to returning the sum of the currently updated word and
of the lastly updated word of the state.

Saito and Matsumoto (2014) claim that XSadd does not fail any BigCrush
test. This is true of the generator, but not of its reverse (i.e., the generator
obtained by reversing the bits of the output). Testing the reverse is important
because of the bias towards high bits of TestU01: indeed, the reverse of XSadd

fails a number of tests, including some that are not due to linear artifacts,
suggesting that it its lower bits are very weak.

We are thus going to study the xorshift+ family of generators, which is
built on the same idea of XSadd (returning the sum of consecutive outputs of an
underlying xorshift generator) but uses 64-bit shifts and the high-dimensional
transition matrix proposed by Marsaglia. In this way we can leverage the knowl-
edge gathered about high-dimensional xorshift generators developed in (Vi-
gna, 2016).

3.1. Equidistribution and full period

In our context, a generator with n bits of state and t output bits is k-
dimensionally equidistributed if over the whole output every k-tuple of con-
secutive output values appears 2n−t−k times, except for the zero k-tuple, which
appears 2n−t−k−1 times. It is known that a xorshift generator with a state of
n bits is n/64-dimensionally equidistributed, and that the associated xorshift*

generator inherits this property (Vigna, 2016). It is easy to show that a slightly
weaker property is true of the associated xorshift+ generator:

3

Proposition 1. If a xorshift generator is k-dimensionally equidistributed, the
associated xorshift+ generator if (k − 1)-dimensionally equidistributed.

Proof. Consider a (k − 1)-tuple 〈t1, t2, . . . , tk−1〉. For each possible value x0,
there is exactly one k-tuple 〈x0, x1, . . . , xk−1〉 such that xi−1 +xi = ti (the sum
is in Z/264Z), for 0 < i < k. Thus, there are exactly 264 appearances of the
(k−1)-tuple 〈t1, t2, . . . , tk−1〉 in the sequence emitted by a xorshift+ generator
associated with a k-dimensionally equidistributed xorshift generator, with the
exception of the zero (k − 1)-tuple, for which the appearance associated with
the zero k-tuple is missing.

Note that in general it is impossible to claim k-dimensional equidistribution.
Consider the full-period 6-bit generator that uses 3-bit shifts with a = 1, b = 2
and c = 1. As a xorshift generator with a 3-bit output (the lowest bits),
it is 2-dimensionally equidistributed. However, it is easy to verify that the
sequence of outputs of the associated xorshift+ generator contains twice the
pair of consecutive 3-bit values 〈000, 000〉, so the generator is 1-, but not 2-
dimensionally equidistributed.

An immediate consequence is that every individual bit of the generator (and
thus a fortiori the entire output) has full period. We will need the following
result, which is Proposition 7.1 from Vigna (2016):

Proposition 2. Let x0, x1, . . . , x2n−2 be a list of 2t-bit values, t ≤ n, such
that every value appears 2n−t times, except for 0, which appears 2n−t− 1 times.
Then, for every fixed bit k the associated sequence has period 2n − 1.

Proposition 3. Every bit of a xorshift+ generator with n bits of state has
period 2n − 1.

Proof. Since n ≥ 7, by Proposition 1 a xorshift+ generator is at least
1-dimensionally equidistributed, and we just have to apply Proposition 7.1
from (Vigna, 2016).

We remark that, similarly to a xorshift or xorshift*5 generator, the lowest
bit of a xorshift+ generator satisfies a linear recurrence, as on the lowest bit
the effect of an addition is the same as that of a xor.

3.2. Choosing the shifts

Vigna (2016) provides choices of shifts for full-period generators with 1024
or 4096 bits of state. In this paper, however, we want to explore the idea
of xorshift+ generators with 128 bits of state to provide an alternative to
XSadd that is free of its statistical flaws, and faster on modern 64-bit CPUs.
Finding generators with a small state space, strong statistical properties and

5It should be remarked that at least the two lowest bits of a xorshift* generator satisfy a
linear recurrence; they become three if the multiplier is congruent to 1 modulo 4, as it happens
in (Vigna, 2016).

4

speed comparable with that of a linear congruential generator is an interesting
practical goal.

We thus computed shifts yielding full-period generators; in particular, we
computed all full-period shift triples such that a is coprime with b and a+b ≤ 64
(there are 272 such triples). We then ran experiments following the protocol used
in (Vigna, 2016), which we briefly recall. We sample generators by executing a
battery of tests from TestU01, a framework for testing pseudorandom number
generators developed by L’Ecuyer and Simard (2007).6 We start at 100 different
seeds that are equispaced in the state space. For instance, for a 64-bit state we
use the seeds 1 + ib264/100c, 0 ≤ i < 100. The tests produce a number of
statistics, and we use the number of failed tests as a measure of low quality.

We consider a test failed if its p-value is outside of the interval [0.001 . . 0.999].
This is the interval outside which TestU01 reports a failure by default. We call
systematic a failure that happens for all seeds. A more detailed discussion of
this choice can be found in (Vigna, 2016). Note that we run our tests both on
a generator and on its reverse, that is, on the generator obtained by reversing
the order of the 64 bits returned. The final score is the sum of the number of
tests failed by a generator and its reverse.

We applied a three-stage strategy using SmallCrush, Crush and BigCrush,
which are increasingly stronger test suites from TestU01. We ran SmallCrush on
all 272 full-period generators described above, isolating 141 which had less than
10 overall failures. We then ran Crush on the latter ones, and finally BigCrush
on the top 10 results.

To get an intuition about the relative strength of the two techniques used
to reduce linear artifacts (multiplication by a constant in xorshift* generators
versus adding outputs in xorshift+ generators), we also performed the same
tests on xorshift128* generators,7 and ran BigCrush on the 20 full-period
triples for xorshift1024+ generators reported in (Vigna, 2016).

4. Results

In Table 1 we report the results of BigCrush on the ten best xorshift128+
generators: we show the number of failures of a generator, of its reverse, their
sum, the weight of the associated polynomial and, finally, systematic failures,
if any; it should be compared with Table 3, which report results for the ten
best xorshift128* generators. In Table 2 we report the same data for the 20

6TestU01 is a 32-bit test suite. As in (Vigna, 2016), we implemented the generation
of a uniform real value in [0 . . 1) by dividing the output of the generator by 264, but we
implemented the generation of uniform 32-bit integer values by returning first the lower and
then the upper 32 bits of each 64-bit generated value.

7As a multiplicative constant, we used a 64-bit fixed-point approximation of the golden
ratio, rounded so that it is congruent to 3 modulo 4. This constant is commonly used for
multiplicative hashing (Knuth, 1997), and our choice of rounding guarantees that only the
two lowest bits will satisfy a linear recurrence.

5

Table 1: Results of BigCrush on the ten best xorshift128+ generators following Crush.

a, b, c
Failures

Weight Systematic failures
S R +

23, 17, 26 34 30 64 61 —

26, 19, 5 31 37 68 53 —

23, 18, 5 38 32 70 65 —

41, 11, 34 31 39 70 61 —

23, 31, 18 48 34 82 57 —

21, 23, 28 53 31 84 47 —

21, 16, 37 57 29 86 39 —

20, 21, 11 66 32 98 51 —

25, 8, 55 48 190 238 51 BirthdaySpacings

29, 13, 7 532 593 1125 57

RandomWalk1C,
RandomWalk1H,
RandomWalk1J,
RandomWalk1M,
RandomWalk1R

full-period generators identified in (Vigna, 2016), which should be compared
with Table VI therein.

All xorshift128* generators fail the MatrixRank test when reversed: with
this state size, multiplication is not able to hide such linear artifacts from
BigCrush, as the two lowest bit of such generators satisfy a linear recurrence.
On the other hand, among the best xorshift128+ generators selected by Crush
some non-linear systematic failure appears.

Table 4 compares the BigCrush scores of the generators we discussed. For
xorshift128+ we used the triple 23, 18, 5 (Figure 1). For xorshift128* we used
the triple 17, 19, 30 and for xorshift1024+/xorshift1024* the triple 31, 11, 30
(the xorshift1024* generator is the one proposed in (Vigna, 2016)).

Our choice of triples is based not only on the BigCrush scores and on poly-
nomial weight, but also on an additional datum: the result of POP (“p-value of
p-values”) tests. BigCrush generates 254 p-values, each corresponding to a spe-
cific statistics (the same test might generate several statistics). If the source is
perfectly random, and the statistics distribution is known exactly, the p-values
generated at different points of the state space should appear to be uniformly
distributed. We can thus test whether this is true for each one of the 254 gener-

6

Table 2: Results of BigCrush on the xorshift1024+ generators. The last five generators fail
systematically a large number of tests.

a, b, c
Failures

Weight
S R +

16, 23, 30 29 26 55 59

31, 11, 30 34 29 63 363

27, 13, 46 30 34 64 275

9, 14, 41 29 36 65 167

10, 11, 61 31 38 69 155

25, 8, 15 28 42 70 281

40, 11, 31 32 39 71 77

7, 16, 55 43 28 71 65

15, 16, 19 38 34 72 255

31, 33, 37 39 35 74 79

9, 5, 60 39 35 74 227

22, 7, 48 38 38 76 223

10, 9, 63 38 45 83 69

31, 10, 27 43 40 83 233

41, 7, 29 50 53 103 265

3, 26, 35 1014 29 1043 89

2, 11, 61 1040 41 1081 81

1, 13, 7 1332 35 1367 113

47, 1, 41 819 777 1596 99

51, 1, 46 844 1047 1891 111

7

Table 3: Results of BigCrush on the ten best xorshift128* generators following Crush. All
generators fail a MatrixRank test when reversed.

a, b, c
Failures

Weight
S R +

49, 2, 25 28 130 158 43

13, 15, 38 32 131 163 47

20, 21, 31 38 129 167 37

44, 7, 18 29 140 169 53

13, 15, 53 39 132 171 47

36, 23, 29 39 133 172 53

10, 19, 15 40 140 180 45

31, 33, 18 32 149 181 47

17, 19, 30 36 146 182 61

22, 5, 16 32 222 254 57

ated values,8 using a goodness-of-fit test to get a p-value (which is a p-value of
p-values): NIST (Rukhin et al., 2001) suggests the threshold 10−4 on a χ2 test on
the counts of the p-values falling in the intervals [k/10 . . (k+1)/10), 0 ≤ k < 10;
we used the more stringent value 10−3 on a Kolmogorov-Smirnov test for the
uniform (continuous) distribution. The triples we suggest for xorshift+ do
not fail any POP test, and the same happens for the xorshift1024* generator
suggested in (Vigna, 2016), but, for example, the first triple listed in Table 1
fails four POP tests.

5. Jumping ahead

The simple form of a xorshift generator makes it trivial to jump ahead
quickly by any number of next-state steps. If v is the current state, we want
to compute vM j for some j. But M j is always expressible as a polynomial
in M of degree lesser than that of the characteristic polynomial. To find such
a polynomial it suffices to compute xj mod P (x), where P (x) is the charac-
teristic polynomial of M . Such a computation can be easily carried out using

standard techniques (quadratures to find x2
k

mod P (x), etc.), leaving us with

8Actually, four p-values (two from the LongestHeadRun test and two from the Fourier3
test) have been dropped as they are based on rather approximate computation of the p-value
of the statistics, as documented by the authors of TestU01, and thus tend to generate spurious
errors.

8

Figure 1: The xorshift128+ generator used in the tests.

#include <stdint.h>

uint64_t s[2];

uint64_t next(void) {

uint64_t s1 = s[0];

const uint64_t s0 = s[1];

const uint64_t result = s0 + s1;

s[0] = s0;

s1 ^= s1 << 23; // a

s[1] = s1 ^ s0 ^ (s1 >> 18) ^ (s0 >> 5); // b, c

return result;

}

a polynomial Q(x) such that Q(M) = M j . Now, if

Q(x) =

n∑
i=0

αix
i,

we have

vM j = vQ(M) =

n∑
i=0

αivM
i,

and now vM i is just the i-th state after the current one. If we known in advance
the αi’s, computing vM j requires just computing the next state for n times,
accumulating by xor the i-th state iff αi 6= 0.9

In general, one needs to compute the αi’s for each desired j, but the practical
usage of this technique is that of providing subsequences that are guaranteed
to be non-overlapping. We can fix a reasonable jump, for example 264 for a
xorshift128+ generator, and store the αi’s for such a jump as a bit mask.
Operating the jump is now entirely trivial, as it requires at most 128 state
changes. In Figure 3 we show the jump function for the generator of Figure 1.
By iterating the jump function, one can access 264 non-overlapping sequences
of length 264 (except for the last one, which will be of length 264 − 1).

5.1. Speed

Table 4 reports the speed of the generators discussed in the paper and of
their xorshift* counterparts on an an Intel R© CoreTM i7-4770 CPU @3.40GHz

9Brent’s ranut generator (Brent, 1992) contains one of the first applications of this tech-
nique.

9

Figure 2: The xorshift1024+ generator used in the tests.

#include <stdint.h>

uint64_t s[16];

int p;

uint64_t next(void) {

const uint64_t s0 = s[p];

uint64_t s1 = s[p = (p + 1) & 15];

const uint64_t result = s0 + s1;

s1 ^= s1 << 31; // a

s[p] = s1 ^ s0 ^ (s1 >> 11) ^ (s0 >> 30); // b, c

return result;

}

(Haswell). We measured the time that is required to emit 64 bits, so in the
XSadd case we measure the time required to emit two 32-bit values. We used
suitable options to keep the compiler from unrolling loops or extracting loop
invariants.

The xorshift128+ case is particularly interesting because we can update
the generator paying essentially no cost for the fact that the state is made of
more than 64 bits: as it is shown in Figure 1, we just need, while performing
an update, to swap the role of the two 64-bit words of state when we move
them into temporary variables. The resulting code is incredibly tight, and, as
it can be seen in Table 4, gives rise to the fastest generator (also because we
no longer need to manipulate the counter that would be necessary to update a
xorshift1024+ generator).

5.2. Escaping zeroland

We show in Figure 4 the speed at which the generators hitherto examined
“escape from zeroland” (Panneton et al., 2006): purely linearly recurrent gen-
erators with a very large state space need a very long time to get from an initial
state with a small number of ones to a state in which the ones are approximately
half. The figure shows a measure of escape time given by the ratio of ones in
a window of 4 consecutive 64-bit values sliding over the first 1000 generated
values, averaged over all possible seeds with exactly one bit set (see (Panneton
et al., 2006) for a detailed description). Table 5 condenses Figure 4 into the
mean and standard deviation of the displayed values.

There are three clearly defined blocks: xorshift128*; then, XSadd, xorshift128+
and xorshift1024*; finally, xorshift1024+. These blocks are reflected also in

10

Figure 3: The jump function for the generator of Figure 1 in C99 code. It is equivalent to 264

calls to next().

#include <stdint.h>

void jump(void) {

static const uint64_t JUMP[] = { 0x8a5cd789635d2dff,

0x121fd2155c472f96 };

uint64_t s0 = 0;

uint64_t s1 = 0;

for(int i = 0; i < sizeof JUMP / sizeof *JUMP; i++)

for(int b = 0; b < 64; b++) {

if (JUMP[i] & 1ULL << b) {

s0 ^= s[0];

s1 ^= s[1];

}

next();

}

s[0] = s0;

s[1] = s1;

}

Table 5. The clear conclusion is that the xorshift* approach yields generators
with faster escape.

6. Conclusions

We discussed the family of xorshift+ generators—a variant of XSadd based
on 64-bit shifts. In particular, we described a xorshift128+ generator that
is currently the fastest full-period generator we are aware of that does not fail
systematically any BigCrush test (not even reversed). xorshift128+ can be
easily implemented in hardware, as it requires just three shift, four xors and
an addition, and have been widely deployed as the basic random generator in
Javascript engine of all major browsers.

Higher-dimensional xorshift+ generators “escape from zeroland” too slowly,
making them less interesting than their xorshift* counterpart.

Brent, R.P., 1992. Uniform random number generators for supercomputers,
in: Supercomputing, the competitive advantage: proceedings of the Fifth

11

Table 4: A comparison of generators.

Algorithm
Speed Failures

W/n Systematic failures
(ns/64 b) S R +

xorshift128+ 1.06 38 32 70 0.50 —

xorshift128* 1.18 36 146 182 0.47 MatrixRank

xorshift1024+ 1.32 34 29 63 0.35 —

xorshift1024* 1.34 33 32 65 0.35 —

XSadd 2.06 38 850 888 0.10

LinearComp,
MatrixRank,
MaxOft,
Permutation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 1 10 100 1000

A
v

er
ag

e
n
u
m

b
er

 o
f

o
n
es

Samples

xorshift128*
xorshift1024*
xorshift128+

xorshift1024+
XSadd

Figure 4: Convergence to “half of the bits are ones in average” plot.

Table 5: Mean and standard deviation for the data shown in Figure 4.

Algorithm Mean Standard deviation

xorshift128* 0.4994 0.0047

xorshift128+ 0.4974 0.0239

XSadd 0.4957 0.0302

xorshift1024* 0.4935 0.0296

xorshift1024+ 0.4575 0.1045

12

Australian Supercomputing Conference, 5ASC Organising Committee, Mel-
bourne. pp. 95–104.

Brent, R.P., 2007. Some long-period random number generators using shifts
and xors. ANZIAM J. 48, C188–202.

Compagner, A., 1991. The hierarchy of correlations in random binary sequences.
Journal of Statistical Physics 63, 883–96.

Knuth, D.E., 1997. The Art of Computer Programming, Volume 1, Fundamental
Algorithms. Third ed., Addison-Wesley, Reading, MA, USA.

L’Ecuyer, P., Simard, R., 2007. TestU01: A C library for empirical testing of
random number generators. ACM Trans. Math. Softw. 33.

Marsaglia, G., 2003. Xorshift RNGs. Journal of Statistical Software 8, 1–6.

Panneton, F., L’Ecuyer, P., 2005. On the xorshift random number generators.
ACM Trans. Model. Comput. Simul 15, 346–61.

Panneton, F., L’Ecuyer, P., Matsumoto, M., 2006. Improved long-period gen-
erators based on linear recurrences modulo 2. ACM Trans. Math. Softw. 32,
1–16.

Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson,
M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S., 2001. A Statistical
Test Suite For Random and Pseudorandom Number Generators for Cryp-
tographic Applications. National Institute for Standards and Technology.
pub-NIST:adr. NIST Special Publication 800-22, with revisions dated May
15, 2001.

Saito, M., Matsumoto, M., 2014. XSadd (version 1.1). URL: http://www.math.
sci.hiroshima-u.ac.jp/~m-mat/MT/XSADD/.

Vigna, S., 2016. An experimental exploration of Marsaglia’s xorshift genera-
tors, scrambled. ACM Trans. Math. Software 42. Article No. 30.

13

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/XSADD/
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/XSADD/

	Introduction
	 generators
	 generators
	Equidistribution and full period
	Choosing the shifts

	Results
	Jumping ahead
	Speed
	Escaping zeroland

	Conclusions

