Skip to main content

Advertisement

Log in

Endostatin inhibits the growth and migration of 4T1 mouse breast cancer cells by skewing macrophage polarity toward the M1 phenotype

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The phenotypic diversity of tumor-associated macrophages (TAMs) increases with tumor development. One of the hallmarks of malignancy is the polarization of TAMs from a pro-immune (M1) phenotype to an immunosuppressive (M2) phenotype. However, the molecular basis of this process is still unclear. Endostatin is a powerful inhibitor of angiogenesis capable of suppressing tumor growth and metastasis. Here, we demonstrate that endostatin induces RAW264.7 cell polarization toward the M1 phenotype in vitro. Endostatin has no effect on TAM numbers in vivo, but results in an increased proportion of F4/80+Nos2+ cells and a decreased proportion of F4/80+CD206+ cells. Overexpression of endostatin in RAW264.7 cells resulted in a decrease in the phosphorylation of STAT3, an increase in expression of vascular endothelial growth factor A and placental growth factor, and an increase in the phosphorylation of STAT1, IκBα and p65 proteins compared with controls. These results indicate that endostatin regulates macrophage polarization, promoting the M1 phenotype by targeting NF-κB and STAT signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APC:

Allophycocyanin

Arg1:

Arginase-1

BMDM:

Bone marrow-derived macrophage

CD206:

Mannose receptor 1

cDNA:

Complementary DNA

CFC:

Colony-forming cell

COX2:

Cyclooxygenase 2

DMSO:

Dimethylsulfoxide

ELISA:

Enzyme-linked immunosorbent assay

FBS:

Fetal bovine serum

FCM:

Flow cytometry

FITC:

Fluorescein isothiocyanate

IHC:

Immunohistochemistry

IL-6:

Interleukin 6

IL-10:

Interleukin 10

IL-12p40:

Interleukin 12p40

M1:

Classical activation macrophage

M2:

Alternative activation macrophage

MMP:

Matrix metalloproteinase

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-dimethyltetrazolium bromide

NF-κB:

Nuclear factor κB

NOS2:

Inducible nitric oxide synthase

PBS:

Phosphate-buffered saline

PE:

Phycoerythrin

PI:

Propidium iodide

PIGF:

Placenta growth factor

qRT-PCR:

Quantitative real-time reverse transcription polymerase chain reaction

SEM:

Scanning electron microscopy

STAT:

Signal transducer and activator of transcriptions

TAMs:

Tumor-associated macrophages

VEGF:

Vascular endothelial growth factor

References

  1. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964. doi:10.1038/nri1733

    Article  CAS  PubMed  Google Scholar 

  2. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. doi:10.1038/nri2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35. doi:10.1038/nri978

    Article  CAS  PubMed  Google Scholar 

  4. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. doi:10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  5. Mantovani A, Sica A, Allavena P, Garlanda C, Locati M (2009) Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 70(5):325–330. doi:10.1016/j.humimm.2009.02.008

    Article  CAS  PubMed  Google Scholar 

  6. Sonda N, Chioda M, Zilio S, Simonato F, Bronte V (2011) Transcription factors in myeloid-derived suppressor cell recruitment and function. Curr Opin Immunol 23(2):279–285. doi:10.1016/j.coi.2010.12.006

    Article  CAS  PubMed  Google Scholar 

  7. Murdoch C, Lewis CE (2005) Macrophage migration and gene expression in response to tumor hypoxia. Int J Cancer 117(5):701–708. doi:10.1002/ijc.21422

    Article  CAS  PubMed  Google Scholar 

  8. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66(2):605–612. doi:10.1158/0008-5472.CAN-05-4005

    Article  CAS  PubMed  Google Scholar 

  9. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M, Biswas SK, Allavena P, Mantovani A (2008) Macrophage polarization in tumour progression. Semin Cancer Biol 18(5):349–355. doi:10.1016/j.semcancer.2008.03.004

    Article  CAS  PubMed  Google Scholar 

  10. Tai SK, Chang HC, Lan KL, Lee CT, Yang CY, Chen NJ, Chou TY, Tarng DC, Hsieh SL (2012) Decoy receptor 3 enhances tumor progression via induction of tumor-associated macrophages. J Immunol 188(5):2464–2471. doi:10.4049/jimmunol.1101101

    Article  CAS  PubMed  Google Scholar 

  11. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285. doi:10.1016/S0092-8674(00)81848-6

    Article  PubMed  Google Scholar 

  12. Hamano Y, Okude T, Shirai R, Sato I, Kimura R, Oqawa M, Ueda Y, Yokosuka O, Kalluri R, Uesa S (2010) Lack of collagen XVIII/endostatin exacerbates immune-mediated glomerulonephritis. J Am Soc Nephrol 21(9):1445–1455. doi:10.1681/ASN.2009050492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rocha FG, Chaves KC, Chammas R, Peron JP, Rizzo LV, Schor N, Bellini MH (2010) Endostatin gene therapy enhances the efficacy of IL-2 in suppressing metastatic renal cell carcinoma in mice. Cancer Immunol Immunother 59(9):1357–1365. doi:10.1007/s00262-010-0865-6

    Article  CAS  PubMed  Google Scholar 

  14. Jia H, Li Y, Zhao T, Li X, Hu J, Yin D, Guo B, Kopecko DJ, Zhao X, Zhang L, Xu DQ (2012) Antitumor effects of Stat3-siRNA and endostatin combined therapies, delivered by attenuated Salmonella, on orthotopically implanted hepatocarcinoma. Cancer Immunol Immunother 61(11):1977–1987. doi:10.1007/s00262-012-1256-y

    Article  CAS  PubMed  Google Scholar 

  15. Coutinho EL, Andrade LN, Chammas R, Morganti L, Schor N, Bellini MH (2007) Anti-tumor effect of endostatin mediated by retroviral gene transfer in mice bearing renal cell carcinoma. FASEB J 21(12):3153–3161. doi:10.1096/fj.07-8412com

    Article  CAS  PubMed  Google Scholar 

  16. Ying W, Cheruku PS, Bazer FW, Safe SH, Zhou B (2013) Investigation of macrophage polarization using bone marrow derived macrophages. J Vis Exp. doi:10.3791/50323

    PubMed  PubMed Central  Google Scholar 

  17. Hohmann EL, Oletta CA, Killeen KP, Miller SI (1996) phoP/phoQ-deleted Salmonella typhi (Ty800) is a safe and immunogenic single-dose typhoid fever vaccine in volunteers. J Infect Dis 173(6):1408–1414. doi:10.1093/infdis/173.6.1408

    Article  CAS  PubMed  Google Scholar 

  18. Ji K, Wang B, Shao YT, Zhang L, Liu YN, Shao C, Li XJ, Li X, Hu JD, Zhao XJ, Xu DQ, Li Y, Cai L (2011) Synergistic suppression of prostatic cancer cells by coexpression of both murine double minute 2 small interfering RNA and wild-type p53 gene in vitro and in vivo. J Pharmacol Exp Ther 338(1):173–183. doi:10.1124/jpet.111.180364

    Article  CAS  PubMed  Google Scholar 

  19. Zhang L, Gao L, Zhao L, Guo B, Ji K, Tian Y, Wang J, Yu H, Hu J, Kalvakolanu DV, Kopecko DJ, Zhao X, Xu DQ (2007) Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs. Cancer Res 67(12):5859–5864. doi:10.1158/0008-5472.CAN-07-0098

    Article  CAS  PubMed  Google Scholar 

  20. Li X, Zhang L, Shao Y, Liang Z, Shao C, Wang B, Guo B, Li N, Zhao X, Li Y, Xu D (2011) Effects of a human plasma membrane-associated sialidase siRNA on prostate cancer invasion. Biochem Biophys Res Commun 416(3–4):270–276. doi:10.1016/j.bbrc.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  21. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56(20):4625–4629

    CAS  PubMed  Google Scholar 

  22. Ohno S, Ohno Y, Suzuki N, Kamei T, Koike K, Inagawa H, Kohchi C, Soma G, Inoue M (2004) Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Res 24(5C):3335–3342

    PubMed  Google Scholar 

  23. Biswas SK, Lewis CE (2010) NF-κB as a central regulator of macrophage function in tumors. J Leukoc Biol 88(5):877–884. doi:10.1189/jlb.0310153

    Article  CAS  PubMed  Google Scholar 

  24. Mancino A, Lawrence T (2010) Nuclear factor-kappa B and tumor-associated macrophages. Clin Cancer Res 16(3):784–789. doi:10.1158/1078-0432.CCR-09-1015

    Article  CAS  PubMed  Google Scholar 

  25. Colonna M (2007) TLR pathways and IFN-regulatory factors: to each its own. Eur J Immunol 37(2):306–309. doi:10.1002/eji.200637009

    Article  CAS  PubMed  Google Scholar 

  26. Ohmori Y, Hamilton TA (2001) Requirement for STAT1 in LPS-induced gene expression in macrophages. J Leukoc Biol 69(4):598–604

    CAS  PubMed  Google Scholar 

  27. Vakkila J, Demarco RA, Lotze MT (2008) Coordinate NF-kappaB and STAT1 activation promotes development of myeloid type 1 dendritic cells. Scand J Immunol 67(3):260–269. doi:10.1111/j.1365-3083.2007.02068.x

    Article  CAS  PubMed  Google Scholar 

  28. Hagemann T, Biswas SK, Lawrence T, Sica A, Lewis CE (2009) Regulation of macrophage function in tumors: the multifaceted role of NF-kappaB. Blood 113(14):3139–3146. doi:10.1182/blood-2008-12-172825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759. doi:10.1038/nri1703

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Li Y, Wang B, Ji K, Liang Z, Guo B, Hu J, Yin D, Du Y, Kopecko DJ, Kalvakolanu DV, Zhao X, Xu D, Zhang L (2013) Delivery of the co-expression plasmid pEndo-Si-Stat3 by attenuated Salmonella serovar typhimurium for prostate cancer treatment. J Cancer Res Clin Oncol 139(6):971–980. doi:10.1007/s00432-013-1398-0

    Article  CAS  PubMed  Google Scholar 

  31. Ding Y, Song N, Luo Y (2012) Role of bone marrow-derived cells in angiogenesis: focus on macrophages and pericytes. Cancer Microenviron 5(3):225–236. doi:10.1007/s12307-012-0106-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686. doi:10.1016/j.it.2004.09.015

    Article  CAS  PubMed  Google Scholar 

  33. Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23(4):344–346. doi:10.1016/j.immuni.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  34. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555. doi:10.1016/S1471-4906(02)02302-5

    Article  CAS  PubMed  Google Scholar 

  35. Dinapoli MR, Calderon CL, Lopez DM (1996) The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene. J Exp Med 183(4):1323–1329

    Article  CAS  PubMed  Google Scholar 

  36. Klimp AH, Hollema H, Kempinga C, van der Zee AG, de Vries EG, Daemen T (2001) Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages. Cancer Res 61(19):7305–7309

    CAS  PubMed  Google Scholar 

  37. Leek RD, Harris AL (2002) Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 7(2):177–189

    Article  PubMed  Google Scholar 

  38. Onita T, Ji PG, Xuan JW, Sakai H, Kanetake H, Maxwell PH, Fong GH, Gabril MY, Moussa M, Chin JL (2002) Hypoxia-induced, perinecrotic expression of endothelial Per-ARNT-Sim domain protein-1/hypoxia-inducible factor-2 alpha correlates with tumor progression, vascularization, and focal macrophage infiltration in bladder cancer. Clin Cancer Res 8(2):471–480

    CAS  PubMed  Google Scholar 

  39. Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193(6):727–740. doi:10.1084/jem.193.6.727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11238–11246. doi:10.1158/0008-5472.CAN-06-1278

    Article  CAS  PubMed  Google Scholar 

  41. Lin EY, Li JF, Bricard G, Wang W, Deng Y, Sellers R, Porcelli SA, Pollard JW (2007) Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol Oncol 1(3):288–302. doi:10.1016/j.molonc.2007.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, Squadrito ML, Sequra I, Li X, Knevels E, Costa S, Vinckier S, Dresselaer T, Akerud P, De Mol M, Salomäki H, Phillipson M, Wyns S, Larsson E, Buysschaert I, Botling J, Himmelreich U, Van Ginderachter JA, De Palma M, Dewerchin M, Claesson-Welsh L, Carmeliet P (2011) HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19(1):31–44. doi:10.1016/j.ccr.2010.11.009

    Article  CAS  PubMed  Google Scholar 

  43. Mira E, Carmona-Rodríguez L, Tardáguila M, Azcoitia I, González-Martín A, Almonacid L, Casas J, Fabriás G, Mañes S (2013) A lovastatin-elicited genetic program inhibits M2 macrophage polarization and enhances T cell infiltration into spontaneous mouse mammary tumors. Oncotarget 4(12):2288–2301

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yang J, Zhang Z, Chen C, Liu Y, Si Q, Chuang TH, Li N, Gomez-Cabrero A, Reisfeld RA, Xiang R, Luo Y (2014) MicroRNA-19a-3p inhibits breast cancer progression and metastasis by inducing macrophage polarization through downregulated expression of Fra-1 proto-oncogene. Oncogene 33(23):3014–3023. doi:10.1038/onc.2013.258

    Article  CAS  PubMed  Google Scholar 

  45. Saccani A, Schioppa T, Porta C, Biswas SK, Nebuloni M, Vago L, Bottazzi B, Colombo MP, Mantovani A, Sica A (2006) p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 66(23):11432–11440. doi:10.1158/0008-5472.CAN-06-1867

    Article  CAS  PubMed  Google Scholar 

  46. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205(6):1261–1268. doi:10.1084/jem.20080108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang H, Harris MB, Rothman P (2000) IL-4/IL-13 signaling beyond JAK/STAT. J Allergy Clin Immunol 105(6 Pt 1):1063–1070

    Article  CAS  PubMed  Google Scholar 

  48. O’Shea JJ, Pesu M, Borie DC, Changelian PS (2004) A new modality for immunosuppression: targeting the JAK/STAT pathway. Nat Rev Drug Discov 3(7):555–564. doi:10.1038/nrd1441

    Article  PubMed  Google Scholar 

  49. Peng Q, Li M, Wang Z, Jiang M, Yan X, Lei S, Zhang H, Zhang W, Liu YY, Luo F (2013) Polarization of tumor-associated macrophage is associated with tumor vascular normalization by endostatin. Thorac Cancer 4(3):295–305. doi:10.1111/1759-7714.12018

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Research Fund for the Scientific and Technological Development Plan Project in Jilin Province (20150414025GH). We are grateful to Shuqin Pan for assistance with the pathological technology applied in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Liu, Y., Gu, J. et al. Endostatin inhibits the growth and migration of 4T1 mouse breast cancer cells by skewing macrophage polarity toward the M1 phenotype. Cancer Immunol Immunother 65, 677–688 (2016). https://doi.org/10.1007/s00262-016-1824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1824-7

Keywords

Navigation