
Performance at Scale with
Amazon ElastiCache

July 2019

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction .. 1

ElastiCache Overview ... 2

Alternatives to ElastiCache ... 2

Memcached vs. Redis ... 3

ElastiCache for Memcached ... 5

Architecture with ElastiCache for Memcached .. 5

Selecting the Right Cache Node Size ... 9

Security Groups and VPC .. 10

Caching Design Patterns... 12

How to Apply Caching .. 12

Consistent Hashing (Sharding) .. 13

Client Libraries ... 15

Be Lazy ... 16

Write On Through ... 18

Expiration Date ... 20

The Thundering Herd ... 21

Cache (Almost) Everything .. 22

ElastiCache for Redis .. 22

Architecture with ElastiCache for Redis .. 23

Distributing Reads and Writes ... 25

Multi-AZ with Auto-Failover .. 26

Sharding with Redis ... 27

Advanced Datasets with Redis ... 31

Game Leaderboards .. 31

Recommendation Engines ... 31

Chat and Messaging .. 32

Queues ... 33

Client Libraries and Consistent Hashing ... 33

Monitoring and Tuning ... 34

Monitoring Cache Efficiency .. 34

Watching for Hot Spots .. 36

Memcached Memory Optimization .. 37

Redis Memory Optimization ... 38

Redis Backup and Restore .. 38

Cluster Scaling and Auto Discovery.. 39

Auto Scaling Cluster Nodes ... 39

Auto Discovery of Memcached Nodes .. 39

Cluster Reconfiguration Events from Amazon SNS.. 41

Conclusion ... 43

Contributors ... 43

Further Reading ... 43

Document Revisions.. 43

Abstract

In-memory caching improves application performance by storing frequently accessed

data items in memory, so that they can be retrieved without access to the primary data

store. Properly leveraging caching can result in an application that not only performs

better, but also costs less at scale. Amazon ElastiCache is a managed service that

reduces the administrative burden of deploying an in-memory cache in the cloud.

Beyond caching, an in-memory data layer also enables advanced use cases, such as

analytics and recommendation engines. This whitepaper lays out common ElastiCache

design patterns, performance tuning tips, and important operational considerations to

get the most out of an in-memory layer.

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 1

Introduction

An effective caching strategy is perhaps the single biggest factor in creating an app that

performs well at scale. A brief look at the largest web, gaming, and mobile apps reveals

that all apps at significant scale have a considerable investment in caching. Despite

this, many developers fail to exploit caching to its full potential. This oversight can result

in running larger database and application instances than needed. Not only does this

approach decrease performance and add cost, but also it limits your ability to scale.

The in-memory caching provided by Amazon ElastiCache improves application

performance by storing critical pieces of data in memory for fast access. You can use

this caching to significantly improve latency and throughput for many read-heavy

application workloads, such as social networking, gaming, media sharing, and Q&A

portals. Cached information can include the results of database queries,

computationally intensive calculations, or even remote API calls. In addition, compute-

intensive workloads that manipulate datasets, such as recommendation engines and

high performance computing simulations, also benefit from an in-memory data layer. In

these applications, very large datasets must be accessed in real time across clusters of

machines that can span hundreds of nodes. Manipulating this data in a disk-based store

would be a significant bottleneck for these applications.

Amazon ElastiCache is a web service that makes it easy to deploy, operate, and scale

an in-memory cache in the cloud. Amazon ElastiCache manages the work involved in

setting up an in-memory service, from provisioning the AWS resources you request to

installing the software. Using Amazon ElastiCache, you can add an in-memory caching

layer to your application in a matter of minutes, with a few API calls. Amazon

ElastiCache integrates with other AWS services such as Amazon Elastic Compute

Cloud (Amazon EC2) and Amazon Relational Database Service (Amazon RDS), as well

as deployment management solutions such as AWS CloudFormation, AWS Elastic

Beanstalk, and AWS OpsWorks.

In this whitepaper, we'll walk through best practices for working with ElastiCache. We'll

demonstrate common in-memory data design patterns, compare the two open source

engines that ElastiCache supports, and show how ElastiCache fits into real-world

application architectures such as web apps and online games. By the end of this paper,

you should have a clear grasp of which caching strategies apply to your use case, and

how you can use ElastiCache to deploy an in-memory caching layer for your app.

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 2

ElastiCache Overview

The Amazon ElastiCache architecture is based on the concept of deploying one or more

cache clusters for your application. After your cache cluster is up and running, the

service automates common administrative tasks, such as resource provisioning, failure

detection and recovery, and software patching. Amazon ElastiCache provides detailed

monitoring metrics associated with your cache nodes, enabling you to diagnose and

react to issues very quickly. For example, you can set up thresholds and receive alarms

if one of your cache nodes is overloaded with requests.

ElastiCache works with both the Redis and Memcached engines. You can launch an

ElastiCache cluster by following the steps in the appropriate User Guide:

• Getting Started with Amazon ElastiCache for Redis1

• Getting Started with Amazon ElastiCache for Memcached2

It's important to understand that Amazon ElastiCache is not coupled to your database

tier. As far as Amazon ElastiCache nodes are concerned, your application is just setting

and getting keys in a slab of memory. That being the case, you can use Amazon

ElastiCache with relational databases such as MySQL or Microsoft SQL Server; with

NoSQL databases such as Amazon DynamoDB or MongoDB; or with no database tier

at all, which is common for distributed computing applications. Amazon ElastiCache

gives you the flexibility to deploy one, two, or more different cache clusters with your

application, which you can use for differing types of datasets.

Alternatives to ElastiCache

In addition to using ElastiCache, you can cache data in AWS in other ways, each of

which has its own pros and cons. Let's briefly review some of the alternatives:

• Amazon CloudFront content delivery network (CDN)—this approach is used

to cache webpages, image assets, videos, and other static data at the edge,

as close to end users as possible. In addition to using CloudFront with static

assets, you can also place CloudFront in front of dynamic content, such as

web apps. The important caveat here is that CloudFront only caches

rendered page output. In web apps, games, and mobile apps, it's very

common to have thousands of fragments of data, which are reused in

multiple sections of the app. CloudFront is a valuable component of scaling a

website, but it does not obviate the need for application caching.

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/GettingStarted.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/GettingStarted.html

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 3

• Amazon RDS Read Replicas—some database engines, such as MySQL,

support the ability to attach asynchronous read replicas. Although useful, this

ability is limited to providing data in a duplicate format of the primary

database. You cannot cache calculations, aggregates, or arbitrary custom

keys in a replica. Also, read replicas are not as fast as in-memory caches.

Read replicas are more interesting for distributing data to remote sites or

apps.

• On-host caching—a simplistic approach to caching is to store data on each

Amazon EC2 application instance, so that it's local to the server for fast

lookup. Don't do this. First, you get no efficiency from your cache in this

case. As application instances scale up, they start with an empty cache,

meaning they end up hammering the data tier. Second, cache invalidation

becomes a nightmare. How are you going to reliably signal 10 or 100

separate EC2 instances to delete a given cache key? Finally, you rule out

interesting use cases for in-memory caches, such as sharing data at high

speed across a fleet of instances.

Let's turn our attention back to ElastiCache, and how it fits into your application.

Memcached vs. Redis

Amazon ElastiCache currently supports two different in-memory key-value engines. You

can choose the engine you prefer when launching an ElastiCache cache cluster:

• Memcached—a widely adopted in-memory key store, and historically the gold

standard of web caching. ElastiCache is protocol-compliant with Memcached, so

popular tools that you use today with existing Memcached environments will

work seamlessly with the service. Memcached is also multithreaded, meaning it

makes good use of larger Amazon EC2 instance sizes with multiple cores.

• Redis—an increasingly popular open-source key-value store that supports more

advanced data structures such as sorted sets, hashes, and lists. Unlike

Memcached, Redis has disk persistence built in, meaning that you can use it for

long-lived data. Redis also supports replication, which can be used to achieve

Multi-AZ redundancy, similar to Amazon RDS.

Although both Memcached and Redis appear similar on the surface, in that they are

both in-memory key stores, they are quite different in practice. Because of the

replication and persistence features of Redis, ElastiCache manages Redis more as a

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 4

relational database. Redis ElastiCache clusters are managed as stateful entities that

include failover, similar to how Amazon RDS manages database failover.

Conversely, because Memcached is designed as a pure caching solution with no

persistence, ElastiCache manages Memcached nodes as a pool that can grow and

shrink, similar to an Amazon EC2 Auto Scaling group. Individual nodes are expendable,

and ElastiCache provides additional capabilities here such as automatic node

replacement and Auto Discovery.

When deciding between Memcached and Redis, here are a few questions to consider:

• Is object caching your primary goal, for example to offload your database? If

so, use Memcached.

• Are you interested in as simple a caching model as possible? If so, use

Memcached.

• Are you planning on running large cache nodes, and require multithreaded

performance with utilization of multiple cores? If so, use Memcached.

• Do you want the ability to scale your cache horizontally as you grow? If so, use

Memcached.

• Does your app need to atomically increment or decrement counters? If so, use

either Redis or Memcached.

• Are you looking for more advanced data types, such as lists, hashes, bit arrays,

HyperLogLogs, and sets? If so, use Redis.

• Does sorting and ranking datasets in memory help you, such as with

leaderboards? If so, use Redis.

• Are publish and subscribe (pub/sub) capabilities of use to your application? If so,

use Redis.

• Is persistence of your key store important? If so, use Redis.

• Do you want to run in multiple AWS Availability Zones (Multi-AZ) with failover? If

so, use Redis.

• Is geospatial support important to your applications? If so, use Redis.

• Is encryption and compliance to standards, such as PCI DSS, HIPAA, and

FedRAMP, required for your business? If so, use Redis.

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 5

Although it's tempting to look at Redis as a more evolved Memcached due to its

advanced data types and atomic operations, Memcached has a longer track record

and the ability to leverage multiple CPU cores.

Because Memcached and Redis are so different in practice, we're going to address

them separately in most of this paper. We will focus on using Memcached as an in-

memory cache pool, and using Redis for advanced datasets, such as game

leaderboards and activity streams.

ElastiCache for Memcached

The primary goal of caching is typically to offload reads from your database or other

primary data source. In most apps, you have hot spots of data that are regularly

queried, but only updated periodically. Think of the front page of a blog or news site, or

the top 100 leaderboard in an online game. In this type of case, your app can receive

dozens, hundreds, or even thousands of requests for the same data before it's updated

again.

Having your caching layer handle these queries has several advantages. First, it's

considerably cheaper to add an in-memory cache than to scale up to a larger database

cluster. Second, an in-memory cache is also easier to scale out, because it's easier to

distribute an in-memory cache horizontally than a relational database.

Last, a caching layer provides a request buffer in the event of a sudden spike in usage.

If your app or game ends up on the front page of Reddit or the App Store, it's not

unheard of to see a spike that is 10–100 times your normal application load. Even if you

auto-scale your application instances, a 10x request spike will likely make your

database very unhappy.

Let's focus on ElastiCache for Memcached first, because it is the best fit for a caching-

focused solution. We'll revisit Redis later in the paper, and weigh its advantages and

disadvantages.

Architecture with ElastiCache for Memcached

When you deploy an ElastiCache Memcached cluster, it sits in your application as a

separate tier alongside your database. As mentioned previously, Amazon ElastiCache

does not directly communicate with your database tier, or indeed have any particular

knowledge of your database. A simplified deployment for a web application looks similar

to the following diagram.

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 6

In this architecture diagram, the Amazon EC2 application instances are in an Auto

Scaling group, located behind a load balancer using Elastic Load Balancing, which

distributes requests among the instances. As requests come into a given EC2 instance,

that EC2 instance is responsible for communicating with ElastiCache and the database

tier. For development purposes, you can begin with a single ElastiCache node to test

your application, and then scale to additional cluster nodes by modifying the

ElastiCache cluster. As you add additional cache nodes, the EC2 application instances

are able to distribute cache keys across multiple ElastiCache nodes. The most common

practice is to use client-side sharding to distribute keys across cache nodes, which we

will discuss later in this paper.

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 7

When you launch an ElastiCache cluster, you can choose the Availability Zones where

the cluster lives. For best performance, you should configure your cluster to use the

same Availability Zones as your application servers. To launch an ElastiCache cluster in

a specific Availability Zone, make sure to specify the Preferred Zone(s) option during

cache cluster creation. The Availability Zones that you specify will be where ElastiCache

will launch your cache nodes. We recommend that you select Spread Nodes Across

Zones, which tells ElastiCache to distribute cache nodes across these zones as evenly

as possible. This distribution will mitigate the impact of an Availability Zone disruption on

your ElastiCache nodes. The trade-off is that some of the requests from your application

to ElastiCache will go to a node in a different Availability Zone, meaning latency will be

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 8

slightly higher. For more details, see Creating a Cluster in the Amazon ElastiCache for

Memcached User Guide3.

As mentioned at the outset, ElastiCache can be coupled with a wide variety of

databases. Here is an example architecture that uses Amazon DynamoDB instead of

Amazon RDS and MySQL:

This combination of DynamoDB and ElastiCache is very popular with mobile and game

companies, because DynamoDB allows for higher write throughput at lower cost than

traditional relational databases. In addition, DynamoDB uses a key-value access pattern

similar to ElastiCache, which also simplifies the programming model. Instead of using

relational SQL for the primary database but then key-value patterns for the cache, both

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Create.html

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 9

the primary database and cache can be programmed similarly. In this architecture

pattern, DynamoDB remains the source of truth for data, but application reads are

offloaded to ElastiCache for a speed boost.

Selecting the Right Cache Node Size

ElastiCache supports a variety of cache node types. We recommend choosing a cache

node from the M5 or R5 families, because the newest node types support the latest-

generation CPUs and networking capabilities. These instance families can deliver up to

25 Gbps of aggregate network bandwidth with enhanced networking based on the

Elastic Network Adapter (ENA) and over 600 GiB of memory. The R5 node types

provide 5% more memory per vCPU and a 10% price per GiB improvement over R4

node types. In addition, R5 node types deliver a ~20% CPU performance improvement

over R4 node types.

If you don’t know how much capacity you need, we recommend starting with one

cache.m5.large node. Use the ElastiCache metrics published to CloudWatch to monitor

memory usage, CPU utilization, and the cache hit rate. If your cluster does not have the

desired hit rate, or you notice that keys are being evicted too often, choose another

node type with more CPU and memory capacity. For production and large workloads,

the R5 nodes typically provide the best performance and memory cost value.

You can get an approximate estimate of the amount of cache memory you'll need by

multiplying the size of items you want to cache by the number of items you want to keep

cached at once. Unfortunately, calculating the size of your cached items can be trickier

than it sounds. You can arrive at a slight overestimate by serializing your cached items

and then counting characters. Here's an example that flattens a Ruby object to JSON,

counts the number of characters, and then multiplies by 2 because there are typically 2

bytes per character:

irb(main):010:0> user = User.find(4)

irb(main):011:0> use/to_json.size * 2

=> 580

In addition to the size of your data, Memcached adds approximately 50–60 bytes of

internal bookkeeping data to each element. The cache key also consumes space, up to

250 characters at 2 bytes each. In this example, it's probably safest to overestimate a

little and guess 1–2 KB per cached object. Keep in mind that this approach is just for

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 10

illustration purposes. Your cached objects can be much larger if you are caching

rendered page fragments or if you use a serialization library that expands strings.

Because Amazon ElastiCache is a pay-as-you-go service, make your best guess at the

node instance size, and then adjust after getting some real-world data. Make sure that

your application is set up for consistent hashing, which will enable you to add additional

Memcached nodes to scale your in-memory layer horizontally. For additional tips, see

Choosing Your Node Size in the Amazon ElastiCache for Memcached User Guide.4

Security Groups and VPC

Like other AWS services, ElastiCache supports security groups. You can use security

groups to define rules that limit access to your instances based on IP address and port.

ElastiCache supports both subnet security groups in Amazon Virtual Private Cloud

(Amazon VPC) and classic Amazon EC2 security groups. We strongly recommend that

you deploy ElastiCache and your application in Amazon VPC, unless you have a

specific need otherwise (such as for an existing application). Amazon VPC offers

several advantages, including fine-grained access rules and control over private IP

addressing. For an overview of how ElastiCache integrates with Amazon VPC, see

Understanding ElastiCache and Amazon VPCs in the Amazon ElastiCache for

Memcached User Guide.5

When launching your ElastiCache cluster in VPC, launch it in a private subnet with no

public connectivity for best security. Memcached does not have any serious

authentication or encryption capabilities, but Redis does support encryption. Following

is a simplified version of our previous architecture diagram that includes an example

VPC subnet design.

To keep your cache nodes as secure as possible, only allow access to your cache

cluster from your application tier, as shown preceding. ElastiCache does not need

connectivity to or from your database tier, because your database does not directly

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/nodes-select-size.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/VPCs.EC.html

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 11

interact with ElastiCache. Only application instances that are making calls to your cache

cluster need connectivity to it.

The way ElastiCache manages connectivity in Amazon VPC is through standard VPC

subnets and security groups. To securely launch an ElastiCache cluster in Amazon

VPC, follow these steps:

1. Create VPC private subnet(s) that will house your ElastiCache cluster, in the

same VPC as the rest of your application. A given VPC subnet maps to a single

Availability Zone. Given this mapping, create a private VPC subnet for each

Availability Zone where you have application instances. Alternatively, you can

reuse another private VPC subnet that you already have. For more information,

refer to VPCs and Subnets in the Amazon Virtual Private Cloud User Guide.6

2. Create a VPC security group for your new cache cluster. Make sure it is also in

the same VPC as the preceding subnet. For more details, see Security Groups

for Your VPC in the Amazon Virtual Private Cloud User Guide.7

3. Create a single access rule for this security group, allowing inbound access on

port 11211 for Memcached or on port 6379 for Redis.

4. Create an ElastiCache subnet group that contains the VPC private subnets that

you created in step 1. This subnet group is how ElastiCache knows which VPC

subnets to use when launching the cluster. For instructions, see Creating a

Cache Subnet Group in the Amazon ElastiCache for Memcached User Guide.8

5. When you launch your ElastiCache cluster, make sure to place it in the correct

VPC, and choose the correct ElastiCache subnet group. For instructions, see

Creating a Cluster in the Amazon ElastiCache for Memcached User Guide.9

A correct VPC security group for your cache cluster should look like the following.

Notice the single inbound rule allowing access to the cluster from the application tier:

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/VPCs.CreatingSubnetGroup.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/VPCs.CreatingSubnetGroup.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Create.html

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 12

To test connectivity from an application instance to your cache cluster in VPC, you can

use netcat, a Linux command-line utility. Choose one of your cache cluster nodes, and

attempt to connect to the node on either port 11211 (Memcached) or port 6379 (Redis):

If the connection is successful, netcat will exit with status 0. If netcat appears to hang, or

exits with a nonzero status, check your VPC security group and subnet settings.

Caching Design Patterns

With a ElastiCache cluster deployed, let's now dive into how to best apply caching in

your application.

How to Apply Caching

With a ElastiCache cluster deployed, let's now dive into how to best apply caching in

your application.

$ nc -z -w5 my-cache-2b.z2vq55.001.usw2.cache.amazonaws.com

11211

$ echo $?

0

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 13

• Is it safe to use a cached value? The same piece of data can have different

consistency requirements in different contexts. For example, during online

checkout, you need the authoritative price of an item, so caching might not be

appropriate. On other pages, however, the price might be a few minutes out of

date without a negative impact on users.

• Is caching effective for that data? Some applications generate access patterns

that are not suitable for caching—for example, sweeping through the key space

of a large dataset that is changing frequently. In this case, keeping the cache up-

to-date could offset any advantage caching could offer.

• Is the data structured well for caching? Simply caching a database record can

often be enough to offer significant performance advantages. However, other

times, data is best cached in a format that combines multiple records together.

Because caches are simple key-value stores, you might also need to cache a

data record in multiple different formats, so you can access it by different

attributes in the record.

You don’t need to make all of these decisions up front. As you expand your usage of

caching, keep these guidelines in mind when deciding whether to cache a given piece

of data.

Consistent Hashing (Sharding)

In order to make use of multiple ElastiCache nodes, you need a way to efficiently

spread your cache keys across your cache nodes. The naïve approach to distributing

cache keys, often found in blogs, looks like this:

This approach applies a hash function (such as CRC32) to the key to add some

randomization, and then uses a math modulo of the number of cache nodes to distribute

the key to a random node in the list. This approach is easy to understand, and most

importantly for any key hashing scheme it is deterministic in that the same cache key

always maps to the same cache node.

cache_node_list = [

’my-cache-2a.z2vq55.0001.usw2.cache.amazonaws.com:11211’,

’my-cache-2a.z2vq55.0002.usw2.cache.amazonaws.com:11211’

]

cache_index = hash(key) % length(cache_node_list)

cache_node = cache_node_list[cache_index]

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 14

Unfortunately, this particular approach suffers from a fatal flaw due to the way that

modulo works. As the number of cache nodes scales up, most hash keys will get

remapped to new nodes with empty caches, as a side effect of using modulo. You can

calculate the number of keys that would be remapped to a new cache node by dividing

the old node count by the new node count. For example, scaling from 1 to 2 nodes

remaps half (½) of your cache keys; scaling from 3 to 4 nodes remaps three-quarters

(¾) of your keys; and scaling from 9 to 10 nodes remaps 90 percent of your keys to

empty caches. Ouch.

This approach is bad for obvious reasons. Think of the scenario where you're scaling

rapidly due to a spike in demand. Just at the point when your application is getting

overwhelmed, you add an additional cache node to help alleviate the load. Instead you

effectively wipe 90 percent of your cache, causing a huge spike of requests to your

database. Your dashboard goes red and you start getting those alerts that nobody

wants to get.

Luckily, there is a well-understood solution to this dilemma, known as consistent

hashing. The theory behind consistent hashing is to create an internal hash ring with a

pre-allocated number of partitions that can hold hash keys. As cache nodes are added

and removed, they are slotted into positions on that ring. The following illustration, taken

from Benjamin Erb’s thesis on Current Programming for Scalable Web Architectures10,

illustrates consistent hashing graphically.

The downside to consistent hashing is that there's quite a bit of math involved—at least,

it's more complicated than a simple modulo. Basically, you preallocate a set of random

integers, and assign cache nodes to those random integers. Then, rather than using

modulo, you find the closest integer in the ring for a given cache key, and use the cache

http://berb.github.io/diploma-thesis/

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 15

node associated with that integer. A concise yet complete explanation can be found in

the article Consistent Hashing11, by Tom White.

Luckily, many modern client libraries include consistent hashing. Although you shouldn't

need to write your own consistent hashing solution from scratch, it's important that you

are aware of consistent hashing, so that you can ensure it's enabled in your client. For

many libraries, it's still not the default behavior, even when supported by the library.

Client Libraries

Mature Memcached client libraries exist for all popular programming languages. Any of

the following Memcached libraries will work with Amazon ElastiCache:

Language Memcached Library

Ruby Dalli12, Dalli::ElastiCache13

Python Memcache Ring14, django-elasticache15, python-
memcached16, pylibmc17

Node.js node-memcached18

PHP ElastiCache Cluster Client19, memcached20

Java ElastiCache Cluster Client21, spymemcached22

C#/.NET ElastiCache Cluster Client23, Enyim Memcached24

For Memcached with Java, .NET, or PHP, we recommend using ElastiCache Clients

with Auto Discovery, because it supports Auto Discovery of new ElastiCache nodes as

they are added to the cache cluster.25 For Java, this library is a simple wrapper around

the popular spymemcached library that adds Auto Discovery support.26 For PHP, it is a

wrapper around the built-in Memcached PHP library. For .NET, it is a wrapper around

Enyim Memcached.

Auto Discovery only works for Memcached, not Redis. When ElastiCache repairs or

replaces a cache node, the Domain Name Service (DNS) name of the cache node will

remain the same, meaning your application doesn't need to use Auto Discovery to deal

with common failures. You only need Auto Discovery support if you dynamically scale

http://www.tom-e-white.com/2007/11/consistent-hashing.html
https://github.com/petergoldstein/dalli
https://github.com/ktheory/dalli-elasticache
https://github.com/youknowone/ring
https://github.com/gusdan/django-elasticache
https://github.com/linsomniac/python-memcached
https://github.com/linsomniac/python-memcached
https://github.com/lericson/pylibmc
https://www.npmjs.com/package/memcached
https://github.com/awslabs/aws-elasticache-cluster-client-memcached-for-php
https://github.com/php-memcached-dev/php-memcached
https://github.com/awslabs/aws-elasticache-cluster-client-memcached-for-java
https://github.com/couchbase/spymemcached
https://github.com/awslabs/elasticache-cluster-config-net
https://github.com/enyim/EnyimMemcached
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clients.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clients.html
https://code.google.com/archive/p/spymemcached/

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 16

the size of your cache cluster on the fly, while your application is running. Dynamic

scaling is only required if your application load fluctuates significantly. For more details,

see Automatically Identify Nodes in your Memcached Cluster in the Amazon

ElastiCache for Memcached User Guide.27

As mentioned, you should choose a client library that includes native support for

consistent hashing. Many of the libraries in the preceding table support consistent

hashing, but we recommend that you check the documentation, because this support

can change over time. Also, you might need to enable consistent hashing by setting an

option in the client library.

In PHP, for example, you need to explicitly set

Memcached::OPT_LIBKETAMA_COMPATIBLE to true to enable consistent hashing:

This code snippet tells PHP to use consistent hashing by using libketama.28 Otherwise,

the default in PHP is to use modulo, which suffers from the drawbacks outlined

preceding.

Next, let's look at some common and effective caching strategies. If you've done a good

amount of caching before, some of this might be old hat.

Be Lazy

Lazy caching, also called lazy population or cache-aside, is the most prevalent form of

caching. Laziness should serve as the foundation of any good caching strategy. The

$cache_nodes = array(

array(’my-cache-

2a.z2vq55.0001.usw2.cache.amazonaws.com’, 11211),

array(’my-cache-

2a.z2vq55.0002.usw2.cache.amazonaws.com’, 11211)

);

$memcached = new Memcached();

$memcached->setOption(Memcached::OPT_LIBKETAMA_COMPATIBLE,

true);

$memcached->addServers($cache_nodes);

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/AutoDiscovery.html
https://github.com/RJ/ketama

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 17

basic idea is to populate the cache only when an object is actually requested by the

application. The overall application flow goes like this:

1. Your app receives a query for data, for example the top 10 most recent news

stories.

2. Your app checks the cache to see if the object is in cache.

3. If so (a cache hit), the cached object is returned, and the call flow ends.

4. If not (a cache miss), then the database is queried for the object. The cache is

populated, and the object is returned.

This approach has several advantages over other methods:

• The cache only contains objects that the application actually requests, which

helps keep the cache size manageable. New objects are only added to the

cache as needed. You can then manage your cache memory passively, by

simply letting Memcached automatically evict (delete) the least-accessed keys

as your cache fills up, which it does by default.

• As new cache nodes come online, for example as your application scales up,

the lazy population method will automatically add objects to the new cache

nodes when the application first requests them.

• Cache expiration, which we will cover in depth later, is easily handled by simply

deleting the cached object. A new object will be fetched from the database the

next time it is requested.

• Lazy caching is widely understood, and many web and app frameworks include

support out of the box.

Here is an example of lazy caching in Python pseudocode:

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 18

You can find libraries in many popular programming frameworks that encapsulate this

pattern. But regardless of programming language, the overall approach is the same.

Apply a lazy caching strategy anywhere in your application where you have data that is

going to be read often, but written infrequently. In a typical web or mobile app, for

example, a user's profile rarely changes, but is accessed throughout the app. A person

might only update his or her profile a few times a year, but the profile might be accessed

dozens or hundreds of times a day, depending on the user. Because Memcached will

automatically evict the less frequently used cache keys to free up memory, you can

apply lazy caching liberally with little downside.

Write On Through

In a write-through cache, the cache is updated in real time when the database is

updated. So, if a user updates his or her profile, the updated profile is also pushed into

the cache. You can think of this as being proactive to avoid unnecessary cache misses,

in the case that you have data that you absolutely know is going to be accessed. A

Python

def get_user(user_id):

Check the cache

record = cache.get(user_id)

if record is None:

Run a DB query

record = db.query("select * from users where id =

?",user_id)

Populate the cache

cache.set(user_id, record)

return record

App code

user = get_user(17)

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 19

good example is any type of aggregate, such as a top 100 game leaderboard, or the top

10 most popular news stories, or even recommendations. Because this data is typically

updated by a specific piece of application or background job code, it's straightforward to

update the cache as well.

The write-through pattern is also easy to demonstrate in pseudocode:

This approach has certain advantages over lazy population:

• It avoids cache misses, which can help the application perform better and feel

snappier.

• It shifts any application delay to the user updating data, which maps better to

user expectations. By contrast, a series of cache misses can give a random user

the impression that your app is just slow.

• It simplifies cache expiration. The cache is always up-to-date.

However, write-through caching also has some disadvantages:

• The cache can be filled with unnecessary objects that aren't actually being

accessed. Not only could this consume extra memory, but unused items can

evict more useful items out of the cache.

Python

def save_user(user_id, values):

Save to DB

record = db.query("update users ... where id = ?",

user_id, values)

Push into cache

cache.set(user_id,

record) return record

App code

user = save_user(17, {"name": "Nate Dogg"})

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 20

• It can result in a lot of cache churn if certain records are updated repeatedly.

• When (not if) cache nodes fail, those objects will no longer be in the cache. You

need some way to repopulate the cache of missing objects, for example by lazy

population.

As might be obvious, you can combine lazy caching with write-through caching to help

address these issues, because they are associated with opposite sides of the data flow.

Lazy caching catches cache misses on reads, and write-through caching populates data

on writes, so the two approaches complement each other. For this reason, it's often best

to think of lazy caching as a foundation that you can use throughout your app, and

write- through caching as a targeted optimization that you apply to specific situations.

Expiration Date

Cache expiration can become complex quickly. In our previous examples, we were only

operating on a single user record. In a real app, a given page or screen often caches a

whole bunch of different stuff at once—profile data, top news stories, recommendations,

comments, and so forth, all of which are being updated by different methods.

Unfortunately, there is no silver bullet for this problem, and cache expiration is a whole

arm of computer science. But there are a few simple strategies that you can use:

• Always apply a time to live (TTL) to all of your cache keys, except those you are

updating by write-through caching. You can use a long time, say hours or even

days. This approach catches application bugs, where you forget to update or

delete a given cache key when updating the underlying record. Eventually, the

cache key will auto-expire and get refreshed.

• For rapidly changing data such as comments, leaderboards, or activity streams,

rather than adding write-through caching or complex expiration logic, just set a

short TTL of a few seconds. If you have a database query that is getting

hammered in production, it's just a few lines of code to add a cache key with a 5

second TTL around the query. This code can be a wonderful Band-Aid to keep

your application up and running while you evaluate more elegant solutions.

• A newer pattern, Russian doll caching, has come out of work done by the Ruby

on Rails team. In this pattern, nested records are managed with their own cache

keys, and then the top-level resource is a collection of those cache keys. Say

that you have a news webpage that contains users, stories, and comments. In

this approach, each of those is its own cache key, and the page queries each of

those keys respectively.

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 21

• When in doubt, just delete a cache key if you're not sure whether it's affected by

a given database update or not. Your lazy caching foundation will refresh the

key when needed. In the meantime, your database will be no worse off than it

was without Memcached.

For a good overview of cache expiration and Russian doll caching, see the blog post

The performance impact of "Russian doll" caching, in the Basecamp Signal vs Noise

blog.29

The Thundering Herd

Also known as dog piling, the thundering herd effect is what happens when many

different application processes simultaneously request a cache key, get a cache miss,

and then each hits the same database query in parallel. The more expensive this query

is, the bigger impact it has on the database. If the query involved is a top 10 query that

requires ranking a large dataset, the impact can be a significant hit.

One problem with adding TTLs to all of your cache keys is that it can exacerbate this

problem. For example, let's say millions of people are following a popular user on your

site. That user hasn't updated his profile or published any new messages, yet his profile

cache still expires due to a TTL. Your database might suddenly be swamped with a

series of identical queries.

TTLs aside, this effect is also common when adding a new cache node, because the

new cache node's memory is empty. In both cases, the solution is to prewarm the cache

by following these steps:

1. Write a script that performs the same requests that your application will. If it's a

web app, this script can be a shell script that hits a set of URLs.

2. If your app is set up for lazy caching, cache misses will result in cache keys

being populated, and the new cache node will fill up.

3. When you add new cache nodes, run your script before you attach the new node

to your application. Because your application needs to be reconfigured to add a

new node to the consistent hashing ring, insert this script as a step before

triggering the app reconfiguration.

4. If you anticipate adding and removing cache nodes on a regular basis,

prewarming can be automated by triggering the script to run whenever your app

receives a cluster reconfiguration event through Amazon Simple Notification

Service (Amazon SNS).

https://signalvnoise.com/posts/3690-the-performance-impact-of-russian-doll-caching

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 22

Finally, there is one last subtle side effect of using TTLs everywhere. If you use the

same TTL length (say 60 minutes) consistently, then many of your cache keys might

expire within the same time window, even after prewarming your cache. One strategy

that's easy to implement is to add some randomness to your TTL:

The good news is that only sites at large scale typically have to worry about this level of

scaling problem. It's good to be aware of, but it's also a good problem to have.

Cache (Almost) Everything

Finally, it might seem as if you should only cache your heavily hit database queries and

expensive calculations, but that other parts of your app might not benefit from caching.

In practice, in-memory caching is widely useful, because it is much faster to retrieve a

flat cache key from memory than to perform even the most highly optimized database

query or remote API call. Just keep in mind that cached data is stale data by definition,

meaning there may be cases where it’s not appropriate, such as accessing an item’s

price during online checkout. You can monitor statistics, like cache misses, to determine

whether your cache is effective, which we will cover in Monitoring and Tuning later in

the paper.

ElastiCache for Redis

So far, we've been talking about ElastiCache for Memcached as a passive component

in our application—a big slab of memory in the cloud. Choosing Redis as our engine

can unlock more interesting possibilities for our application, due to its higher-level data

structures such as lists, hashes, sets, and sorted sets.

Deploying Redis makes use of familiar concepts such as clusters and nodes. However,

Redis has a few important differences compared with Memcached:

• Redis data structures cannot be horizontally sharded. As a result, Redis

ElastiCache clusters are always a single node, rather than the multiple nodes we

saw with Memcached.

ttl = 3600 + (rand() * 120) /* +/- 2 minutes */

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 23

• Redis supports replication, both for high availability and to separate read

workloads from write workloads. A given ElastiCache for Redis primary node

can have one or more replica nodes. A Redis primary node can handle both

reads and writes from the app. Redis replica nodes can only handle reads,

similar to Amazon RDS Read Replicas.

• Because Redis supports replication, you can also fail over from the primary node

to a replica in the event of failure. You can configure ElastiCache for Redis to

automatically fail over by using the Multi-AZ feature.

• Redis supports persistence, including backup and recovery. However, because

Redis replication is asynchronous, you cannot completely guard against data

loss in the event of a failure. We will go into detail on this topic in our discussion

of Multi-AZ.

Architecture with ElastiCache for Redis

As with Memcached, when you deploy an ElastiCache for Redis cluster, it is an

additional tier in your app. Unlike Memcached, ElastiCache clusters for Redis only

contain a single primary node. After you create the primary node, you can configure one

or more replica nodes and attach them to the primary Redis node. An ElastiCache for

Redis replication group consists of a primary and up to five read replicas. Redis

asynchronously replicates the data from the primary to the read replicas.

Because Redis supports persistence, it is technically possible to use Redis as your only

data store. In practice, customers find that a managed database such as Amazon

DynamoDB or Amazon RDS is a better fit for most use cases of long-term data storage.

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 24

ElastiCache for Redis has the concept of a primary endpoint, which is a DNS name that

always points to the current Redis primary node. If a failover event occurs, the DNS

entry will be updated to point to the new Redis primary node. To take advantage of this

functionality, make sure to configure your Redis client so that it uses the primary

endpoint DNS name to access your Redis cluster.

Keep in mind that the number of Redis replicas you attach will affect the performance of

the primary node. Resist the urge to spin up lots of replicas just for durability. One or

two replicas in a different Availability Zone are sufficient for availability. When scaling

read throughput, monitor your application's performance and add replicas as needed.

Be sure to monitor your ElastiCache cluster's performance as you add replica nodes.

For more details, see Monitoring and Tuning later in this paper.

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 25

Distributing Reads and Writes

Using read replicas with Redis, you can separate your read and write workloads. This

separation lets you scale reads by adding additional replicas as your application grows.

In this pattern, you configure your application to send writes to the primary endpoint.

Then you read from one of the replicas, as shown in the following diagram. With this

approach, you can scale your read and write loads independently, so your primary node

only has to deal with writes.

The main caveat to this approach is that reads can return data that is slightly out of date

compared to the primary node, because Redis replication is asynchronous. For

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 26

example, if you have a global counter of "total games played" that is being continuously

incremented (a good fit for Redis), your master might show 51,782. However, a read

from a replica might only return 51,775. In many cases, this is just fine. But if the

counter is a basis for a crucial application state, such as the number of seconds

remaining to vote on the most popular pop singer, this approach won't work.

When deciding whether data can be read from a replica, here are a few questions to

consider:

• Is the value being used only for display purposes? If so, being slightly out of date

is probably okay.

• Is the value a cached value, for example a page fragment? If so, again being

slightly out of date is likely fine.

• Is the value being used on a screen where the user might have just edited it? In

this case, showing an old value might look like an application bug.

• Is the value being used for application logic? If so, using an old value can be

risky.

• Are multiple processes using the value simultaneously, such as a lock or queue?

If so, the value needs to be up-to-date and needs to be read from the primary

node.

In order to split reads and writes, you will need to create two separate Redis connection

handles in your application: one pointing to the primary node, and one pointing to the

read replica(s). Configure your application to write to the DNS primary endpoint, and

then read from the other Redis nodes.

Multi-AZ with Auto-Failover

During certain types of planned maintenance, or in the unlikely event of ElastiCache

node failure or Availability Zone failure, Amazon ElastiCache can be configured to

automatically detect the failure of the primary node, select a read replica, and promote it

to become the new primary. ElastiCache auto-failover will then update the DNS primary

endpoint with the IP address of the promoted read replica. If your application is writing

to the primary node endpoint as recommended earlier, no application change will be

needed.

Depending on how in-sync the promoted read replica is with the primary node, the

failover process can take several minutes. First, ElastiCache needs to detect the

failover, then suspend writes to the primary node, and finally complete the failover to the

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 27

replica. During this time, your application cannot write to the Redis ElastiCache cluster.

Architecting your application to limit the impact of these types of failover events will

ensure greater overall availability.

Unless you have a specific need otherwise, all production deployments should use

Multi-AZ with auto-failover. Keep in mind that Redis replication is asynchronous,

meaning if a failover occurs, the read replica that is selected might be slightly behind the

master.

Bottom line: Some data loss might occur if you have rapidly changing data. This effect is

currently a limitation of Redis replication itself. If you have crucial data that cannot be

lost (for example, transactional or purchase data), we recommend that you also store

that in a durable database such as Amazon DynamoDB or Amazon RDS.

Sharding with Redis

Redis has two categories of data structures: simple keys and counters, and

multidimensional sets, lists, and hashes. The bad news is the second category cannot

be sharded horizontally. But the good news is that simple keys and counters can.

In the simplest case, you can treat a single Redis node just like a single Memcached

node. Just like you might spin up multiple Memcached nodes, you can spin up multiple

Redis clusters, and each Redis cluster is responsible for part of the sharded dataset.

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 28

In your application, you'll then need to configure the Redis client to shard between those

two clusters. Here is an example from the Jedis Sharded Java Client:

You can also combine horizontal sharding with split reads and writes. In this setup, you

have two or more Redis clusters, each of which stores part of the key space. You

List<JedisShardInfo> shards = new

ArrayList<JedisShardInfo>();

shards.add(new JedisShardInfo("redis-cluster1", 6379));

shards.add(new JedisShardInfo("redis-cluster2", 6379));

ShardedJedisPool pool = new ShardedJedisPool(shards);

ShardedJedis jedis = pool.getResource();

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 29

configure your application with two separate sets of Redis handles, a write handle that

points to the sharded masters and a read handle that points to the sharded replicas.

Following is an example architecture, this time with Amazon DynamoDB rather than

MySQL, just to illustrate that you can use either one:

For the purpose of simplification, the preceding diagram shows replicas in the same

Availability Zone as the primary node. In practice, you should place the replicas in a

different Availability Zone. From an application perspective, continuing with our Java

example, you configure two Redis connection pools as follows:

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 30

In designing your application, you need to make decisions as to whether a given value

can be read from the replica pool, which might be slightly out of date, or from the

primary write node. Be aware that reading from the primary node will ultimately limit the

throughput of your entire Redis layer, because it takes I/O away from writes.

Using multiple clusters in this fashion is the most advanced configuration of Redis

possible. In practice, it is overkill for most applications. However, if you design your

application so that it can leverage a split read/write Redis layer, you can apply this

design in the future, if your application grows to the scale where it is needed.

List<JedisShardInfo> masters = new

ArrayList<JedisShardInfo>();

masters.add(new JedisShardInfo("redis-masterA", 6379));

masters.add(new JedisShardInfo("redis-masterB", 6379));

ShardedJedisPool write_pool = new

ShardedJedisPool(masters);

ShardedJedis write_jedis = write_pool.getResource();

List<JedisShardInfo> replicas = new

ArrayList<JedisShardInfo>();

replicas.add(new JedisShardInfo("redis-replicaA", 6379));

replicas.add(new JedisShardInfo("redis-replicaB", 6379));

ShardedJedisPool read_pool = new

ShardedJedisPool(replicas);

ShardedJedis read_jedis = read_pool.getResource();

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 31

Advanced Datasets with Redis

Let's briefly look at some use cases that ElastiCache for Redis can support.

Game Leaderboards

If you've played online games, you're probably familiar with top 10 leaderboards. What

might not be obvious is that calculating a top n leaderboard in near-real time is actually

quite complex. An online game can easily have thousands of people playing

concurrently, each with stats that are changing continuously. Re-sorting these users

and reassigning a numeric position is computationally expensive.

Sorted sets are particularly interesting here, because they simultaneously guarantee

both the uniqueness and ordering of elements. Redis sorted set commands all start with

Z. When an element is inserted in a Redis sorted set, it is reranked in real time and

assigned a numeric position. Here is a complete game leaderboard example in Redis:

ZADD “leaderboard” 556 “Andy”

ZADD “leaderboard” 819 “Barry”

ZADD “leaderboard” 105 “Carl”

ZADD “leaderboard” 1312 “Derek”

ZREVRANGE “leaderboard” 0 -1

1) “Derek”

2) “Barry”

3) “Andy”

4) “Carl”

ZREVRANK “leaderboard” “Barry”

2

When a player's score is updated, the Redis command ZADD overwrites the existing

value with the new score. The list is instantly re-sorted, and the player receives a new

rank. For more information, refer to the Redis documentation on ZADD30, ZRANGE31,

and ZRANK32.

Recommendation Engines

Similarly, calculating recommendations for users based on other items they've liked

requires very fast access to a large dataset. Some algorithms, such as Slope One33, are

http://redis.io/commands/ZADD
http://redis.io/commands/zrange
http://redis.io/commands/zrank
https://en.wikipedia.org/wiki/Slope_One

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 32

simple and effective but require in-memory access to every item ever rated by anyone

in the system. Even if this data is kept in a relational database, it has to be loaded in

memory somewhere to run the algorithm.

Redis data structures are a great fit for recommendation data. You can use Redis

counters used to increment or decrement the number of likes or dislikes for a given

item. You can use Redis hashes to maintain a list of everyone who has liked or disliked

that item, which is the type of data that Slope One requires. Here is a brief example of

storing item likes and dislikes:

From this simple data, not only can we use Slope One or Jaccardian similarity to

recommend similar items, but we can use the same counters to display likes and

dislikes in the app itself. In fact, a number of open source projects use Redis in exactly

this manner, such as Recommendify34 and Recommendable35. In addition, because

Redis supports persistence, this data can live solely in Redis. This placement eliminates

the need for any data loading process, and also offloads an intensive process from your

main database.

Chat and Messaging

Redis provides a lightweight pub/sub mechanism that is well-suited to simple chat and

messaging needs. Use cases include in-app messaging, web chat windows, online

game invites and chat, and real-time comment streams (such as you might see during a

live streaming event). Two basic Redis commands are involved, PUBLISH and

SUBSCRIBE:

INCR "item:38923:likes"

HSET "item:38923:ratings" "Susan" 1

INCR "item:38923:dislikes"

HSET "item:38923:ratings" "Tommy" -1

SUBSCRIBE "chat:114"

PUBLISH "chat:114" "Hello all"

["message", "chat:114", "Hello all"]

UNSUBSCRIBE "chat:114"

https://github.com/paulasmuth/recommendify
https://github.com/davidcelis/recommendable

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 33

Unlike other Redis data structures, pub/sub messaging doesn't get persisted to disk.

Redis pub/sub messages are not written as part of the RDB or AOF backup files that

Redis creates. If you want to save these pub/sub messages, you will need to add them

to a Redis data structure, such as a list. For more details, see Using Pub/Sub for

Asynchronous Communication in the Redis Cookbook36.

Also, because Redis pub/sub is not persistent, you can lose data if a cache node fails. If

you're looking for a reliable topic-based messaging system, consider evaluating

Amazon SNS.

Queues

Although we offer a managed queue service in the form of Amazon Simple Queue

Service (Amazon SQS) and we encourage customers to use it, you can also use Redis

data structures to build queuing solutions. The Redis documentation for RPOPLPUSH

covers two well-documented queuing patterns.37 In these patterns, Redis lists are used

to hold items in a queue. When a process takes an item from the queue to work on it,

the item is pushed onto an "in-progress" queue, and then deleted when the work is

done.

Open source solutions such as Resque use Redis as a queue; GitHub uses Resque.38

Redis does have certain advantages over other queue options, such as very fast speed,

once and only once delivery, and guaranteed message ordering. However, pay careful

attention to ElastiCache for Redis backup and recovery options (which we will cover

shortly) if you intend to use Redis as a queue. If a Redis node terminates and you have

not properly configured its persistence options, you can lose the data for the items in

your queue. Essentially, you need to view your queue as a type of database, and treat it

appropriately, rather than as a disposable cache.

Client Libraries and Consistent Hashing

As with Memcached, you can find Redis client libraries for the currently popular

programming languages. Any of these will work with ElastiCache for Redis:

Language Redis Library

Ruby redis-rb39, Redis::Objects40

 Python redis-py41

https://github.com/rediscookbook/rediscookbook
https://github.com/rediscookbook/rediscookbook
https://redis.io/commands/rpoplpush
https://github.com/resque/resque
https://github.com/redis/redis-rb
https://github.com/nateware/redis-objects
https://github.com/andymccurdy/redis-py

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 34

Language Redis Library

Node.js node_redis42, ioredis43

PHP phpredis44, Predis45

Java Jedis46, Lettuce47, Redisson48

C#/.NET ServiceStack.Redis49, StackExchange.Redis50

 GO go-redis/redis51, Radix52, Redigo53

Unlike with Memcached, it is uncommon for Redis libraries to support consistent

hashing. Redis libraries rarely support consistent hashing because the advanced data

types that we discussed preceding cannot simply be horizontally sharded across

multiple Redis nodes. This point leads to another, very important one: Redis as a

technology cannot be horizontally scaled easily. Redis can only scale up to a larger

node size, because its data structures must reside in a single memory image in order to

perform properly.

Note that Redis Cluster was first made available in Redis version 3.0. It aims to provide

scale-out capability with certain data types. Redis Cluster currently only supports a

subset of Redis functionality, and has some important caveats about possible data loss.

For more details, see the Redis Cluster Specification.54

Monitoring and Tuning

Before we wrap up, let's spend some time talking about monitoring and performance

tuning.

Monitoring Cache Efficiency

To begin, see the Monitoring Use with CloudWatch topic for Redis55 and Memcached56,

as well as the Which Metrics Should I Monitor? topic for Redis57 and Memcached58 in

the Amazon ElastiCache User Guide. Both topics are excellent resources for

understanding how to measure the health of your ElastiCache cluster using the metrics

that ElastiCache publishes to Amazon CloudWatch. Most importantly, watch CPU

https://github.com/NodeRedis/node_redis
https://github.com/luin/ioredis
https://github.com/phpredis/phpredis
https://github.com/nrk/predis
https://github.com/xetorthio/jedis/
https://github.com/lettuce-io/lettuce-core
https://github.com/redisson/redisson
https://github.com/ServiceStack/ServiceStack.Redis
https://github.com/StackExchange/StackExchange.Redis
https://github.com/go-redis/redis
https://github.com/mediocregopher/radix
https://github.com/gomodule/redigo
https://redis.io/topics/cluster-spec
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/CacheMetrics.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.WhichShouldIMonitor.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/CacheMetrics.WhichShouldIMonitor.html

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 35

usage. A consistently high CPU usage indicates that a node is overtaxed, either by too

many concurrent requests, or by performing dataset operations in the case of Redis.

For Redis, ElastiCache provides two different types of metrics for monitoring CPU

usage: CPUUtilization and EngineCPUUtilization. Because Redis is single-threaded,

you need to multiply the CPU percentage by the number of cores to get an accurate

measure of CPUUtilization. For smaller node types with one or two vCPUs, use the

CPUUtilization metric to monitor your workload. For larger node types with four or more

vCPUs, we recommend monitoring the EngineCPUUtilization metric, which reports the

percentage of usage on the Redis engine core.

After Redis maxes out a single CPU core, that node is fully utilized, and further scaling

is needed. If your main workload is from read requests, add more replicas to distribute

the read workloads across the replicas and reader endpoints. If your main workload is

from write requests, add more shards to distribute the write workload across more

primary nodes.

In addition to CPU, here is some additional guidance for monitoring cache memory

utilization. Each of these metrics is available in CloudWatch for your ElastiCache

cluster:

• Evictions—both Memcached and Redis manage cache memory internally, and

when memory starts to fill up they evict (delete) unused cache keys to free

space. A small number of evictions shouldn't alarm you, but a large number

means that your cache is running out of space.

• CacheMisses—the number of times a key was requested but not found in the

cache. This number can be fairly large if you're using lazy population as your

main strategy. If this number is remaining steady, it's likely nothing to worry

about. However, a large number of cache misses combined with a large eviction

number can indicate that your cache is thrashing due to lack of memory.

• BytesUsedForCacheItems—this value is the actual amount of cache memory

that Memcached or Redis is using. Both Memcached and Redis attempt to

allocate as much system memory as possible, even if it's not used by actual

cache keys. Thus, monitoring the system memory usage on a cache node

doesn't tell you how full your cache actually is.

• SwapUsage—in normal usage, neither Memcached nor Redis should be

performing swaps.

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 36

• Currconnections—this is a cache engine metric representing the number of

clients connected to the engine. We recommend that you determine your own

alarm threshold for this metric based on your application needs. An increasing

number of CurrConnections might indicate a problem with your application—

you’ll need to investigate the application’s behavior to address this issue.

A well-tuned cache node will show the number of cache bytes used to be almost equal

to the maxmemory parameter in Redis, or the max_cache_memory parameter in

Memcached. In steady state, most cache counters will increase, with cache hits

increasing faster than misses. You also will probably see a low number of evictions.

However, a rising number of evictions indicates that cache keys are getting pushed out

of memory, which means you can benefit from larger cache nodes with more memory.

The one exception to the evictions rule is if you follow a strict definition of Russian doll

caching, which says that you should never cause cache items to expire, but instead let

Memcached and Redis evict unused keys as needed. If you follow this approach, keep

a close watch on cache misses and bytes used to detect potential problems.

Watching for Hot Spots

In general, if you are using consistent hashing to distribute cache keys across your

cache nodes, your access patterns should be fairly even across nodes. However, you

still need to watch out for hot spots, which are nodes in your cache that receive higher

load than other nodes. This pattern is caused by hot keys, which are cache keys that

are accessed more frequently than others. Think of a social website, where you have

some users that might be 10,000 times more popular than an average user. That user's

cache keys will be accessed much more often, which can put an uneven load onto the

cache nodes that house that user's keys.

If you see uneven CPU usage among your cache nodes, you might have a hot spot.

This pattern often appears as one cache node having a significantly higher operation

count than other nodes. One way to confirm this is by keeping a counter in your

application of your cache key gets and puts. You can push these as custom metrics into

CloudWatch, or another monitoring service. Don't do this unless you suspect a hot spot,

however, because logging every key access will decrease the overall performance of

your application.

In the most common case, a few hot keys will not necessarily create any significant hot

spot issues. If you have a few hot keys on each of your cache nodes, then those hot

keys are themselves evenly distributed, and are producing an even load on your cache

nodes. If you have three cache nodes and each of them has a few hot keys, then you

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 37

can continue sizing your cache cluster as if those hot keys did not exist. In practice,

even a well-designed application will have some degree of unevenness in cache key

access.

In extreme cases, a single hot cache key can create a hot spot that overwhelms a single

cache node. In this case, having good metrics about your cache, especially your most

popular cache keys, is crucial to designing a solution. One solution is to create a

mapping table that remaps very hot keys to a separate set of cache nodes. Although

this approach provides a quick fix, you will still face the challenge of scaling those new

cache nodes. Another solution is to add a secondary layer of smaller caches in front of

your main nodes, to act as a buffer. This approach gives you more flexibility, but

introduces additional latency into your caching tier.

The good news is that these concerns only hit applications of a significant scale. We

recommend being aware of this potential issue and monitoring for it, but not spending

time trying to engineer around it up front. Hot spots are a fast-moving area of computer

science research, and there is no one-size-fits-all solution. As always, our team of

Solutions Architects is available to work with you to address these issues if you

encounter them. For more research on this topic, refer to papers such as Relieving Hot

Spots on the World Wide Web59 and Characterizing Load Imbalance in Real-World

Networked Caches.60

Memcached Memory Optimization

Memcached uses a slab allocator, which means that it allocates memory in fixed

chunks, and then manages those chunks internally. Using this approach, Memcached

can be more efficient and predictable in its memory access patterns than if it used the

system malloc(). The downside of the Memcached slab allocator is that memory chunks

are rigidly allocated once and cannot be changed later. This approach means that if you

choose the wrong number of the wrong size slabs, you might run out of Memcached

chunks while still having plenty of system memory available.

When you launch an ElastiCache cluster, the max_cache_memory parameter is set for

you automatically, along with several other parameters. For a list of default values, see

Memcached Specific Parameters in the Amazon ElastiCache for Memcached User

Guide.61 The key parameters to keep in mind are chunk_size and

chunk_size_growth_factor, which work together to control how memory chunks are

allocated.

http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-716.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-716.pdf
https://ymsir.com/papers/imbalance-hotnets.pdf
https://ymsir.com/papers/imbalance-hotnets.pdf
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ParameterGroups.Memcached.html

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 38

Redis Memory Optimization

Redis has a good write-up on memory optimization that can come in handy for

advanced use cases.62 Redis exposes a number of Redis configuration variables that

will affect how Redis balances CPU and memory for a given dataset. These directives

can be used with ElastiCache for Redis as well.

Redis Backup and Restore

Redis clusters support persistence by using backup and restore. When Redis backup

and restore is enabled, ElastiCache can automatically take snapshots of your Redis

cluster and save them to Amazon Simple Storage Service (Amazon S3). The Amazon

ElastiCache User Guide includes excellent coverage of this function in the topic

ElastiCache for Redis Backup and Restore.63

Because of the way Redis backups are implemented in the Redis engine itself, you

need to have more memory available that your dataset consumes. This requirement is

because Redis forks a background process that writes the backup data. To do so, it

makes a copy of your data, using Linux copy-on-write semantics. If your data is

changing rapidly, this approach means that those data segments will be copied,

consuming additional memory. For more details, refer to Amazon ElastiCache Backup

Best Practices.

For production use, we strongly recommend that you always enable Redis backups,

and retain them for a minimum of 7 days. In practice, retaining them for 14 or 30 days

will provide better safety in the event of an application bug that ends up corrupting data.

Even if you plan to use Redis primarily as a performance optimization or caching layer,

persisting the data means you can prewarm a new Redis node, which avoids the

thundering herd issue that we discussed earlier. To create a new Redis cluster from a

backup snapshot, see Seeding a New Cluster with an Externally Created Backup in the

Amazon ElastiCache for Redis User Guide.64

You can also use a Redis snapshot to scale up to a larger Amazon EC2 instance type.

To do so, follow this process:

1. Suspend writes to your existing ElastiCache cluster. Your application can

continue to do reads.

2. Take a snapshot by following the procedure in the Creating a Manual Snapshot

section in the Amazon ElastiCache for Redis User Guide.65 Give it a distinctive

name that you will remember.

https://redis.io/topics/memory-optimization
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups-seeding-redis.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups-manual.html

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 39

3. Create a new ElastiCache Redis cluster, and specify the snapshot you took

preceding to seed it.

4. Once the new ElastiCache cluster is online, reconfigure your application to start

writing to the new cluster.

Currently, this process will interrupt your application's ability to write data into Redis. If

you have writes that are only going into Redis and that cannot be suspended, you can

put those into Amazon SQS while you are resizing your ElastiCache cluster. Then, once

your new ElastiCache Redis cluster is ready, you can run a script that pulls those

records off Amazon SQS and writes them to your new Redis cluster.

Cluster Scaling and Auto Discovery

Scaling your application in response to changes in demand is one of the key benefits of

working with AWS. Many customers find that configuring their client with a list of node

DNS endpoints for ElastiCache works perfectly fine. But let's look at how to scale your

ElastiCache Memcached cluster while your application is running, and how to set up

your application to detect changes to your cache layer dynamically.

Auto Scaling Cluster Nodes

Amazon ElastiCache does not currently support using Auto Scaling to scale the number

of cache nodes in a cluster. To change the number of cache nodes, you can use either

the AWS Management Console or the AWS API to modify the cluster. For more

information, refer to Modifying an ElastiCache Cache Cluster in the Amazon

ElastiCache for Memcached User Guide.66

In practice, you usually don't want to regularly change the number of cache nodes in

your Memcached cluster. Any change to your cache nodes will result in some

percentage of cache keys being remapped to new (empty) nodes, which means a

performance impact to your application. Even with consistent hashing, you will see an

impact on your application when adding or removing nodes.

Auto Discovery of Memcached Nodes

The ElastiCache Clients with Auto Discovery for Java, .NET, and PHP support Auto

Discovery of new ElastiCache Memcached nodes.67 For Ruby, the open source library

dalli-elasticache68 provides autodiscovery support, and django-elasticache69 is available

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Modify.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clients.html
https://github.com/ktheory/dalli-elasticache
https://github.com/gusdan/django-elasticache

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 40

for Python Django. In other languages, you'll need to implement autodiscovery yourself.

Luckily, this implementation is very easy.

The overall Auto Discovery mechanism is outlined in the How Auto Discovery Works

topic in the Amazon ElastiCache for Memcached User Guide.70 Basically, ElastiCache

adds a special Memcached configuration variable called cluster that contains the DNS

names of the current cache nodes. To access this list, your application connects to your

cache cluster configuration endpoint71, which is a hostname ending in

cfg.region.cache.amazonaws.com.

After you retrieve the list of cache node host names, your application configures its

Memcached client to connect to the list of cache nodes, using consistent hashing to

balance across them. Here is a complete working example in Ruby:

require 'socket'

require 'dalli'

socket = TCPSocket.new(

'my-cache-

2a.z2vq55.cfg.usw2.cache.amazonaws.com', 11211

)

socket.puts("config get cluster")

header = socket.gets

version = socket.gets

nodelist = socket.gets.chomp.split(/\s+/).map{|l|

l.split('|').first }

socket.close

Configure Memcached client

cache = Dalli::Client.new(nodelist)

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/AutoDiscovery.HowAutoDiscoveryWorks.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Endpoints.html

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 41

Using Linux utilities, you can even do this from the command line using netcat, which

can be useful in a script:

Using Auto Discovery, your Amazon EC2 application servers can locate Memcached

nodes as they are added to a cache cluster. However, once your application has an

open socket to a Memcached instance, it won't necessarily detect any changes to the

cache node list that might happen later. To make this a complete solution, two more

things are needed:

• The ability to scale cache nodes as needed

• The ability to trigger an application reconfiguration on the fly

Cluster Reconfiguration Events from Amazon SNS

Amazon ElastiCache publishes a number of notifications to Amazon SNS when a

cluster change happens, such as a configuration change or replacement of a node.

Because these notifications are sent through Amazon SNS, you can route them to

multiple endpoints, including email, Amazon SNS, or other Amazon EC2 instances. For

a complete list of Amazon SNS events that ElastiCache publishes, see the Event

ec2-host$ echo "config get cluster" | \

nc my-cache-2a.z2vq55.cfg.usw2.cache.amazonaws.com 11211 |

\

grep 'cache.amazonaws.com' | tr ' ' '\n' | cut -d'|' -f 1

my-cache-2a.z2vq55.0001.usw2.cache.amazonaws.com

my-cache-2a.z2vq55.0002.usw2.cache.amazonaws.com

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 42

Notifications and Amazon SNS topic for Redis72 or Memcached73 in the Amazon

ElastiCache User Guide.

If you want your application to dynamically detect nodes that are being added or

removed, you can use these notifications as follows. Note that the following process is

not required to deal with cache node failures. If a cache node fails and is replaced by

ElastiCache, the DNS name will remain the same. Most client libraries should

automatically reconnect once the cache node becomes available again.

The two most interesting events that ElastiCache publishes, at least for the purposes of

scaling our cache, are ElastiCache:AddCacheNodeComplete and

ElastiCache:RemoveCacheNodeComplete. These events are published when cache

nodes are added or removed from the cluster. By listening for these events, your

application can dynamically reconfigure itself to detect the new cache nodes. The basic

process for using Amazon SNS with your application is as follows:

1. Create an Amazon SNS topic for your ElastiCache alerts, as described in

Managing ElastiCache Amazon SNS Notifications in the Amazon ElastiCache

User Guide for Redis74 or Memcached75.

2. Modify your application code to subscribe to this Amazon SNS topic. All of your

application instances will listen to the same topic. See the blog post Receiving

Amazon SNS Messages in PHP for details and code examples.76

3. When a cache node is added or removed, you will receive a corresponding

Amazon SNS message. At that point, your application needs to be able to rerun

the Auto Discovery code we discussed preceding to get the updated cache node

list.

4. After your application has the new list of cache nodes, it also reconfigures its

Memcached client accordingly.

Again, this workflow is not needed for cache node recovery—only if nodes are added or

removed dynamically, and you want your application to dynamically detect them.

Otherwise, you can simply add the new cache nodes to your application's configuration,

and restart your application servers. To accomplish this with zero downtime to your app,

you can leverage solutions such as zero-downtime deploys with Elastic Beanstalk.

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ElastiCacheSNS.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ElastiCacheSNS.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ECEvents.SNS.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ECEvents.SNS.html
https://blogs.aws.amazon.com/php/post/Tx2G9D94IE6KPAY/Receiving-Amazon-SNS-Messages-in-PHP
https://blogs.aws.amazon.com/php/post/Tx2G9D94IE6KPAY/Receiving-Amazon-SNS-Messages-in-PHP

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 43

Conclusion

Proper use of in-memory caching can result in an application that performs better and

costs less at scale. Amazon ElastiCache greatly simplifies the process of deploying an

in-memory cache in the cloud. By following the steps outlined in this paper, you can

easily deploy an ElastiCache cluster running either Memcached or Redis on AWS, and

then use the caching strategies we discussed to increase the performance and

resiliency of your application. You can change the configuration of ElastiCache to add,

remove, or resize nodes as your application's needs change over time, in order to get

the most out of your in-memory data tier.

Contributors

Contributors to this document include:

• Nate Wiger, Amazon Web Services

• Rajan Timalsina, Cloud Support Engineer, Amazon Web Services

Document Revisions

Date Description

July 2019 Corrected broken links, added links to libraries, and incorporated

minor text updates throughout.

May 2015 First publication

1 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/GettingStarted.html
2 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/GettingStarted.html
3 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-
ug/Clusters.Create.html
4 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/nodes-select-
size.html
5 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/VPCs.EC.html

Notes

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/GettingStarted.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/GettingStarted.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Create.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Create.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/nodes-select-size.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/nodes-select-size.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/VPCs.EC.html

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 44

6 https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html

7 https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

8 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-
ug/VPCs.CreatingSubnetGroup.html

9 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Create.html

10 http://berb.github.io/diploma-thesis/

11 http://www.tom-e-white.com/2007/11/consistent-hashing.html

12 https://github.com/petergoldstein/dalli

13 https://github.com/ktheory/dalli-elasticache

14 https://github.com/youknowone/ring

15 https://github.com/gusdan/django-elasticache

16 https://github.com/linsomniac/python-memcached

17 https://github.com/lericson/pylibmc

18 https://www.npmjs.com/package/memcached

19 https://github.com/awslabs/aws-elasticache-cluster-client-memcached-for-php

20 https://github.com/php-memcached-dev/php-memcached

21 https://github.com/awslabs/aws-elasticache-cluster-client-memcached-for-java

22 https://github.com/couchbase/spymemcached

23 https://github.com/awslabs/elasticache-cluster-config-net

24 https://github.com/enyim/EnyimMemcached

25 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clients.html

26 https://code.google.com/archive/p/spymemcached/

27 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/AutoDiscovery.html

28 https://github.com/RJ/ketama

29 https://signalvnoise.com/posts/3690-the-performance-impact-of-russian-doll-caching

30 https://redis.io/commands/ZADD

31 https://redis.io/commands/zrange

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/VPCs.CreatingSubnetGroup.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/VPCs.CreatingSubnetGroup.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Create.html
http://berb.github.io/diploma-thesis/
http://www.tom-e-white.com/2007/11/consistent-hashing.html
https://github.com/petergoldstein/dalli
https://github.com/ktheory/dalli-elasticache
https://github.com/youknowone/ring
https://github.com/gusdan/django-elasticache
https://github.com/linsomniac/python-memcached
https://github.com/lericson/pylibmc
https://www.npmjs.com/package/memcached
https://github.com/awslabs/aws-elasticache-cluster-client-memcached-for-php
https://github.com/php-memcached-dev/php-memcached
https://github.com/awslabs/aws-elasticache-cluster-client-memcached-for-java
https://github.com/couchbase/spymemcached
https://github.com/awslabs/elasticache-cluster-config-net
https://github.com/enyim/EnyimMemcached
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clients.html
https://code.google.com/archive/p/spymemcached/
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/AutoDiscovery.html
https://github.com/RJ/ketama
https://signalvnoise.com/posts/3690-the-performance-impact-of-russian-doll-caching
https://redis.io/commands/ZADD
https://redis.io/commands/zrange

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 45

32 https://redis.io/commands/zrank

33 https://en.wikipedia.org/wiki/Slope_One

34 https://github.com/paulasmuth/recommendify

35 https://github.com/davidcelis/recommendable

36 https://github.com/rediscookbook/rediscookbook
37 https://redis.io/commands/rpoplpush

38 https://github.com/resque/resque

39 https://github.com/redis/redis-rb

40 https://github.com/nateware/redis-objects

41 https://github.com/andymccurdy/redis-py

42 https://github.com/NodeRedis/node_redis

43 https://github.com/luin/ioredis

44 https://github.com/phpredis/phpredis

45 https://github.com/nrk/predis

46 https://github.com/xetorthio/jedis/

47 https://github.com/lettuce-io/lettuce-core

48 https://github.com/redisson/redisson

49 https://github.com/ServiceStack/ServiceStack.Redis

50 https://github.com/StackExchange/StackExchange.Redis

51 https://github.com/go-redis/redis

52 https://github.com/mediocregopher/radix

53 https://github.com/gomodule/redigo

54 https://redis.io/topics/cluster-spec
55 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.html

56 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/CacheMetrics.html

57 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-

ug/CacheMetrics.WhichShouldIMonitor.html

https://redis.io/commands/zrank
https://en.wikipedia.org/wiki/Slope_One
https://github.com/paulasmuth/recommendify
https://github.com/davidcelis/recommendable
https://github.com/rediscookbook/rediscookbook
https://redis.io/commands/rpoplpush
https://github.com/resque/resque
https://github.com/redis/redis-rb
https://github.com/nateware/redis-objects
https://github.com/andymccurdy/redis-py
https://github.com/NodeRedis/node_redis
https://github.com/luin/ioredis
https://github.com/phpredis/phpredis
https://github.com/nrk/predis
https://github.com/xetorthio/jedis/
https://github.com/lettuce-io/lettuce-core
https://github.com/redisson/redisson
https://github.com/ServiceStack/ServiceStack.Redis
https://github.com/StackExchange/StackExchange.Redis
https://github.com/go-redis/redis
https://github.com/mediocregopher/radix
https://github.com/gomodule/redigo
https://redis.io/topics/cluster-spec
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/CacheMetrics.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.WhichShouldIMonitor.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.WhichShouldIMonitor.html

Amazon Web Services Performance at Scale with Amazon ElastiCache

 Page 46

58 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-

ug/CacheMetrics.WhichShouldIMonitor.html

59 http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-716.pdf

60 https://ymsir.com/papers/imbalance-hotnets.pdf

61 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-

ug/ParameterGroups.Memcached.html

62 https://redis.io/topics/memory-optimization

63 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups.html

64 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups-seeding-redis.html

65 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups-manual.html

66 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Modify.html

67 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clients.html

68 https://github.com/ktheory/dalli-elasticache

69 https://github.com/gusdan/django-elasticache

70 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-
ug/AutoDiscovery.HowAutoDiscoveryWorks.html

71 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Endpoints.html

72 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ElastiCacheSNS.html

73 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ElastiCacheSNS.html

74 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ECEvents.SNS.html

75 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ECEvents.SNS.html

76 https://blogs.aws.amazon.com/php/post/Tx2G9D94IE6KPAY/Receiving-Amazon-

SNS-Messages-in-PHP

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/CacheMetrics.WhichShouldIMonitor.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/CacheMetrics.WhichShouldIMonitor.html
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-716.pdf
https://ymsir.com/papers/imbalance-hotnets.pdf
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ParameterGroups.Memcached.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ParameterGroups.Memcached.html
https://redis.io/topics/memory-optimization
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups-seeding-redis.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups-manual.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Modify.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clients.html
https://github.com/ktheory/dalli-elasticache
https://github.com/gusdan/django-elasticache
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/AutoDiscovery.HowAutoDiscoveryWorks.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/AutoDiscovery.HowAutoDiscoveryWorks.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Endpoints.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ElastiCacheSNS.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ElastiCacheSNS.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ECEvents.SNS.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ECEvents.SNS.html
https://blogs.aws.amazon.com/php/post/Tx2G9D94IE6KPAY/Receiving-Amazon-SNS-Messages-in-PHP
https://blogs.aws.amazon.com/php/post/Tx2G9D94IE6KPAY/Receiving-Amazon-SNS-Messages-in-PHP

	Introduction
	ElastiCache Overview
	Alternatives to ElastiCache
	Memcached vs. Redis
	ElastiCache for Memcached
	Architecture with ElastiCache for Memcached
	Selecting the Right Cache Node Size
	Security Groups and VPC

	Caching Design Patterns
	How to Apply Caching
	Consistent Hashing (Sharding)
	Client Libraries
	Be Lazy
	Write On Through
	Expiration Date
	The Thundering Herd
	Cache (Almost) Everything

	ElastiCache for Redis
	Architecture with ElastiCache for Redis
	Distributing Reads and Writes
	Multi-AZ with Auto-Failover
	Sharding with Redis

	Advanced Datasets with Redis
	Game Leaderboards
	Recommendation Engines
	Chat and Messaging
	Queues
	Client Libraries and Consistent Hashing

	Monitoring and Tuning
	Monitoring Cache Efficiency
	Watching for Hot Spots
	Memcached Memory Optimization
	Redis Memory Optimization
	Redis Backup and Restore

	Cluster Scaling and Auto Discovery
	Auto Scaling Cluster Nodes
	Auto Discovery of Memcached Nodes
	Cluster Reconfiguration Events from Amazon SNS

	Conclusion
	Contributors
	Document Revisions

