Chapter 3
Burgers Equation

One of the major challenges in the field of complex systemstimeough under-
standing of the phenomenon of turbulence. Direct numestallations (DNS)

have substantially contributed to our understanding ofliterdered flow phenom-
ena inevitably arising at high Reynolds numbers. Howevsyeacessful theory of
turbulence is still lacking which whould allow to predictateres of technologi-
cally important phenomena like turbulent mixing, turbuleanvection, and turbu-
lent combustion on the basis of the fundamental fluid dynah@quations. This is
due to the fact that already the evolution equation for thepest fluids, which are
the so-called Newtonian incompressible fluids, have to tateeaccount nonlinear
as well as nonlocal properties:

%u(x,t)+u(x,t) -Ou(x,t) = —0p(x,t) + vAu(x,t),
O-u(x,t) = 0. (3.2)

Nonlinearity stems from the convective term and the pressenm, whereas non-
locality enters due to the pressure term. Due to incomgriitgi the pressure is
defined by a Poisson equation

Ap(x,t) = —0-u(x,t) - Ou(x,t). (3.2)

In 1939 the dutch scientist J.M. Burgers [1] simplified thevidaStokes equa-
tion (3.1) by just dropping the pressure term. In contragido(3.1), this equation
can be investigated in one spatial dimension (Physicikéstt denote this as 1+1
dimensional problem in order to stress that there is onaapatd one temporal
coordinate):

4 9 0* F 3.3
Eu(x,t) +u(x,t)a—xu(x,t) = qu(x,t) +F(x.t) (3.3)

Note that usually the Burgers equation is considered withgternal force (x,t).
However, we shall include this external force field.
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The Burgers equation 3.3 is nonlinear and one expects to fisdgmena sim-
ilar to turbulence. However, as it has been shown by Hopf [#] &ole [3], the
homogeneous Burgers equation lacks the most importanepyogttributed to tur-
bulence: The solutions do not exhibit chaotic features $i&esitivity with respect
to initial conditions. This can explicitly shown using tliwopf-Cole transforma-
tion which transforms Burgers equation into a linear parabajiga¢ion. From the
numerical point of view, however, this is of importance siitcallows one to com-
pare numerically obtained solutions of the nonlinear equawith the exact one.
This comparison is important to investigate the quality e aipplied numerical
schemes. Furthermore, the equation has still interesfiplications in physics and
astrophysics. We will briefly mention some of them.

Growth of interfaces: Deposition models

The Burgers equation (3.3) is equivalent to the so-caleddar-Parisi-Zhang
(KPZ-) equation which is a model for a solid surface growing by vapor deposi-
tion, or, the opposite case, erosion of material from a saliface. The location of
the surface is described in terms of a height funchipnt). This height evolves in
time according to the KPZ-equation

0 1 2 02
—h(x,t) — = (Oh(x,t))" = Vo

ot 2 h(x,t) +F(xt). (3.4)

This equation is obtained from the simple advection equédtio a surface ar =
h(x,t) moving with velocityU(x,t)

%h(x,t) +U-Oh(x,t)=0. (3.5)
The velocity is assumed to be proportional to the gradieh{xft), i.e. the surface
evolves in the direction of its gradient. Surface diffus®described by the diffusion
term.

Burgers equation (3.3) is obtained from the KPZ-equatiah y forming the
gradient ofh(x;t):
u(x,t) = —0Oh(x,t). (3.6)

3.1 Hopf-Cole Transformation

The Hopf-Cole transformation is a transformation, whichpmthe solution of the
Burgers equation (3.3) to the heat equation

0

SrYO6) =VAP(xt). 3.7)



We perform the ansatz

Y(x,t) =Xt/ (3.8)
and determine L L
_ = il 2 /2v
Ay = [Ath o (Oh) }eh (3.9)
leading to
9o }(Dh)z = vAh (3.10)
a2 B ' '

However, this is exactly the Kardar-Parisi-Zhang equatos). The complete trans-
formation is then obtained by combining

u(x,t) = 721‘/ Oinyg(x,t). (3.12)

We explicitly see that the Hopf-Cole transformation turhe tonlinear Burgers
equation into the linear heat conduction equation. Sineeh#hat conduction equa-
tion is explicitly solvable in terms of the so-called heatried we obtain a general
solution of the Burgers equation. Before we construct teisagal solution, we want
to emphasize that the Hopf-Cole transformation appliechéonulti-dimensional
Burgers equation only leads to the general solution pralitie initial condition
u(x,0) is a gradient field. For general initial conditions, esplgifr initial fields
with O x u(x,t), the solution can not be constructed using the Hopf-Colestra-
mation and, consequently, is not known in analytical tetmene dimension spatial
dimension it is not necessary to distinguish between theseases.

3.2 General Solution of the 1D Burgers Equation

We are now in the position to formulate the general solutibthe Burgers equa-
tion (3.3) in one spatial dimension with initial condition

u(x,0), W(x,0) = e~ 2 [ XUX0) (3.12)

The solution of the 1D heat equation can be expressed by #tekhenel

Wixt) = /dx’G(x—x’,t)qJ(x’,O) (3.13)
with the kernel -
G(x—X,t) = \/i_me“ﬁ) (3.14)

In terms of the initial condition (3.12) the solution exjillig reads

x—x)2 X gl
Wxt) = —iﬁ/d%e’( B~ 2 [ XU 0) (3.15)



Then-dimensional solution of the Burgers equation (3.3) fotiatfields, which are
gradient fields, are obtained analogously:

1 (X*X,)z 1 X o "
Xt)=——— [dxe  ar —av ) &UKL0) 3.16
Agian, we see that the solution exist provided the integgahdependent of the
integration contour:

/x, dx”-u(x”,0) = h(x,t). (3.17)

We can investigate the limiting case of vanishing viscosity 0. In the expression
for @(x,t), eq. (3.16), the integral is dominated by the minimum of tkgomential

function, , y
; (X*X,) i / !
min [ Y 2v/ dx"u(x’,0)| . (3.18)

This leads to the so-called characteristics (see App. (B))

x=X —tu(x,0), (3.19)

which we have already met in the discussion of the advectipraton (2.1) (see
Chapter 2). A special solution for the viscid Burgers equrais

u(x,t)y=1— tanh(xzix‘c)t> . (3.20)

3.3 Forced Burgers Equation

The Hopf-Cole transformation can be applied to the forcethBrs equation. It is
straightforward to show that this leads to the parabolifed#ntial equation

% (x,t) = VAY(x,t) —U (X,t)P(x,t1), (3.22)

where the potential is related to the force

1
F(x,t) = > OU (x,t). (3.22)
The relationship with the Schrodinger equation for a pletinoving in the potential
U (x,t) is obvious. Recently, the Burgers equation with a fluctuptionce has been
investigated [12]. Interestingly, Burgers equation wilinaar force, i.e. a quadratic
potential
U (x,t) = a(t)x? (3.23)

for an arbitrary time dependent coefficiexit) could be solved analytically [7].



3.4 Numerical Treatment

Let us consider a one-dimensional Burgers equation (3 tBjowt forcing.

ou, ou_ 0
ot ax  ox2’

Whenv = 0, Burgers equation becomt inviscid Burgers equation:

Jdu du
ot + Uz = 0, (3.24)
which is a prototype for equations for which the solution ckvelop disconti-
nuities (shock waves). As was mentioned above, as the solution of the advection
equation (2.1), the solution of Eq. (3.24) can be constrdubjethe method of char-
acteristics (see App. B). Suppose we have an initial valoblpm, i.e., a smooth
functionu(x,0) = up(x), x € R is given. In this case the coefficierAsB andC are

A=u, B=1 C=0.

Equations (B.2-B.3) read

dt

ds = le t(0)=0<t=s

du

g = 0 [u(0) = o(x0)| + u(s, Xo) = Uo(¥o),
dx

E-ue [X(0) = Xg| < X = Up(Xo)t + Xo.

Hence the general solution of (3.24) takes the form
u(X,t) = Uo(X— Uo(Xo)t, ). (3.25)

Eq. (3.25) is an implicit relation that determines the dolubf the inviscid Burgers’

equation. Note that the characteristics are straight libesnot all the lineas have
the same slope. It will be possible for the characteristiéatersect. If we write the
characteristics as u X0

" Up(x0) Uo(x0)’
one can see, that the slopgug(xp) of the characteristics depends on the paint
and on the initial functionu. For inviscid Burgers’ equation (3.24), the tinie
at which the characteristics cross and a shock forms, theaking” time, can be
determined exactly as

-1
To=——
©7 minf{uy(x,0)}

This relation can be used if Eqg. (3.24) has smooth initishdab that it is differen-
tiable). From the formula fof, we can see that the solution will break and a shock



will form if ux(x,0) is negative at some point. From numerical point of view it is
convenient to rewrite the Burgers’ equation as

du 190 ,,
EJrEd—X(u)fO (3.26)
Equation (3.26) describes a one-dimensional conserviatio(2.13) withF = %uz
and can be solve, e.g., with the upwind method (2.4) or with lthx-Wendroff
method (2.14).

Space interval L=10

Initial condition Up(X) = exp(—(x— 3)?)
Space discretization step|Ax=0.05

Time discretization step [[At=0.05

Amount of time steps T=36
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3.4.0.1 The Riemann Problem

A Riemann problem, named aftBernhard Riemann, consists of a conservation law,
e.g., Eq. (3.24) together with a piecewise constant datmbasingle discontinuity,
ie.,

u, X< g
u(x,0) = upg(x) = 3.27
(x,0) = Uo(X) {Un x> a (3.27)
The form of the solution depends on the relation betwgemdu, .
e U > U;: The unique weak solution (see Fig. 3.2 (a)) is
u, X< a-+ct;
u(x,0) = up(x) = 3.28
(x.0) = Uo(¥ hh ‘ot (3.28)
with the shock velocity
1
c=3 (U +ur).

Note, that in this case the characteristics in each of themeghereu is constatnt
go into the shock as time advances (see Fig. 3.3 (b) ).

Space interval L=10

Initial condition u=08u=0.2
Space discretization step|Ax=0.05
Time discretization step [|[At=0.05
Amount of tine steps T =100

The initial condition is:

0.8, X< 5;

3.29
0.2, X>5. ( )

ummzmmz{

e U < Uy: In this case there are infinitely many weak solutions. On¢hefn

is again (3.28) with the same velocity (see Fig. 3.4 (a)).eNbat in this case the
characteristicgo out of the shock (Fig. 3.4 (b)) and the solution is not stable to
perturbations.
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Fig. 3.3 a) Numerical solution of the inviscid Burgers’ equation2@. for the Riemann problem
for uy < ur. b) Characterics of Eq. (3.24) with initial conditions (8)2The red line indicates the

curvex =a+ct.
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Fig. 3.4 a) Numerical solution of the inviscid Burgers’ equati@?)for the Riemann problem for
U < ur. b) Characterics of the inviscid Burgers’ equation withialiconditions £?). The red line

indicates the curve = a+-ct.



