
Chapter 3
Burgers Equation

One of the major challenges in the field of complex systems is athorough under-
standing of the phenomenon of turbulence. Direct numericalsimulations (DNS)
have substantially contributed to our understanding of thedisordered flow phenom-
ena inevitably arising at high Reynolds numbers. However, asuccessful theory of
turbulence is still lacking which whould allow to predict features of technologi-
cally important phenomena like turbulent mixing, turbulent convection, and turbu-
lent combustion on the basis of the fundamental fluid dynamical equations. This is
due to the fact that already the evolution equation for the simplest fluids, which are
the so-called Newtonian incompressible fluids, have to takeinto account nonlinear
as well as nonlocal properties:

∂
∂ t

u(x,t)+ u(x,t) ·∇u(x,t) = −∇p(x,t)+ ν∆u(x,t) ,

∇ ·u(x,t) = 0. (3.1)

Nonlinearity stems from the convective term and the pressure term, whereas non-
locality enters due to the pressure term. Due to incompressibility, the pressure is
defined by a Poisson equation

∆ p(x,t) = −∇ ·u(x,t) ·∇u(x,t) . (3.2)

In 1939 the dutch scientist J.M. Burgers [1] simplified the Navier-Stokes equa-
tion (3.1) by just dropping the pressure term. In contrast toEq. (3.1), this equation
can be investigated in one spatial dimension (Physicists like to denote this as 1+1
dimensional problem in order to stress that there is one spatial and one temporal
coordinate):

∂
∂ t

u(x,t)+ u(x,t)
∂
∂x

u(x,t) = ν
∂ 2

∂x2 u(x,t)+ F(x,t) (3.3)

Note that usually the Burgers equation is considered without external forceF(x,t).
However, we shall include this external force field.
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The Burgers equation 3.3 is nonlinear and one expects to find phenomena sim-
ilar to turbulence. However, as it has been shown by Hopf [8] and Cole [3], the
homogeneous Burgers equation lacks the most important property attributed to tur-
bulence: The solutions do not exhibit chaotic features likesensitivity with respect
to initial conditions. This can explicitly shown using theHopf-Cole transforma-
tion which transforms Burgers equation into a linear parabolic equation. From the
numerical point of view, however, this is of importance since it allows one to com-
pare numerically obtained solutions of the nonlinear equation with the exact one.
This comparison is important to investigate the quality of the applied numerical
schemes. Furthermore, the equation has still interesting applications in physics and
astrophysics. We will briefly mention some of them.

Growth of interfaces: Deposition models

The Burgers equation (3.3) is equivalent to the so-calledKardar-Parisi-Zhang
(KPZ-) equation which is a model for a solid surface growing by vapor deposi-
tion, or, the opposite case, erosion of material from a solidsurface. The location of
the surface is described in terms of a height functionh(x,t). This height evolves in
time according to the KPZ-equation

∂
∂ t

h(x,t)− 1
2

(∇h(x,t))2 = ν
∂ 2

∂x2 h(x,t)+ F(x,t) . (3.4)

This equation is obtained from the simple advection equation for a surface atz =
h(x,t) moving with velocityU(x,t)

∂
∂ t

h(x,t)+ U ·∇h(x,t)= 0. (3.5)

The velocity is assumed to be proportional to the gradient ofh(x,t), i.e. the surface
evolves in the direction of its gradient. Surface diffusionis described by the diffusion
term.

Burgers equation (3.3) is obtained from the KPZ-equation just by forming the
gradient ofh(x,t):

u(x,t) = −∇h(x,t) . (3.6)

3.1 Hopf-Cole Transformation

The Hopf-Cole transformation is a transformation, which maps the solution of the
Burgers equation (3.3) to the heat equation

∂
∂ t

ψ(x,t) = ν∆ψ(x,t) . (3.7)



We perform the ansatz
ψ(x,t) = eh(x,t)/2ν (3.8)

and determine

∆ψ =
1

2ν

[

∆h +
1

2ν
(∇h)2

]

eh/2ν (3.9)

leading to
∂
∂ t

h− 1
2
(∇h)2 = ν∆h . (3.10)

However, this is exactly the Kardar-Parisi-Zhang equation(3.4). The complete trans-
formation is then obtained by combining

u(x,t) = − 1
2ν

∇ lnψ(x,t) . (3.11)

We explicitly see that the Hopf-Cole transformation turns the nonlinear Burgers
equation into the linear heat conduction equation. Since the heat conduction equa-
tion is explicitly solvable in terms of the so-called heat kernel we obtain a general
solution of the Burgers equation. Before we construct this general solution, we want
to emphasize that the Hopf-Cole transformation applied to the multi-dimensional
Burgers equation only leads to the general solution provided the initial condition
u(x,0) is a gradient field. For general initial conditions, especially for initial fields
with ∇×u(x,t), the solution can not be constructed using the Hopf-Cole transfor-
mation and, consequently, is not known in analytical terms.In one dimension spatial
dimension it is not necessary to distinguish between these two cases.

3.2 General Solution of the 1D Burgers Equation

We are now in the position to formulate the general solution of the Burgers equa-
tion (3.3) in one spatial dimension with initial condition

u(x,0) , ψ(x,0) = e−
1

2ν
∫ x dx′u(x′,0) . (3.12)

The solution of the 1D heat equation can be expressed by the heat-kernel

ψ(x,t) =

∫

dx′G(x− x′,t)ψ(x′,0) (3.13)

with the kernel

G(x− x′,t) =
1√
4πt

e−
(x−x′)2

4νt (3.14)

In terms of the initial condition (3.12) the solution explicitly reads

ψ(x,t) =
1√
4πt

∫

dx′e−
(x−x′)2

4νt − 1
2ν

∫ x′ dx′′u(x′′,0) . (3.15)



Then-dimensional solution of the Burgers equation (3.3) for initial fields, which are
gradient fields, are obtained analogously:

ψ(x,t) =
1

(4πt)d/2

∫

dx′e−
(x−x′)2

4νt − 1
2ν

∫ x′ dx′′·u(x′′,0) . (3.16)

Agian, we see that the solution exist provided the integral is independent of the
integration contour:

∫ x′

dx′′ ·u(x′′,0) = h(x′,t) . (3.17)

We can investigate the limiting case of vanishing viscosity, ν → 0. In the expression
for ψ(x,t), eq. (3.16), the integral is dominated by the minimum of the exponential
function,

min
x′

[

− (x− x′)2

4νt
− 1

2ν

∫ x′

dx′′u(x′′,0)

]

. (3.18)

This leads to the so-called characteristics (see App. (B))

x = x′− tu(x′,0) , (3.19)

which we have already met in the discussion of the advection equation (2.1) (see
Chapter 2). A special solution for the viscid Burgers equation is

u(x,t) = 1− tanh

(

x− xc− t
2ν

)

. (3.20)

3.3 Forced Burgers Equation

The Hopf-Cole transformation can be applied to the forced Burgers equation. It is
straightforward to show that this leads to the parabolic differential equation

∂
∂ t

ψ(x,t) = ν∆ψ(x,t)−U(x,t)ψ(x,t) , (3.21)

where the potential is related to the force

F(x,t) = − 1
2ν

∇U(x,t) . (3.22)

The relationship with the Schrödinger equation for a particle moving in the potential
U(x,t) is obvious. Recently, the Burgers equation with a fluctuating force has been
investigated [12]. Interestingly, Burgers equation with alinear force, i.e. a quadratic
potential

U(x,t) = a(t)x2 (3.23)

for an arbitrary time dependent coefficienta(t) could be solved analytically [7].



3.4 Numerical Treatment

Let us consider a one-dimensional Burgers equation (3.3) without forcing.

∂u
∂ t

+ u
∂u
∂x

= ν
∂ 2u
∂x2 .

Whenν = 0, Burgers equation becomesthe inviscid Burgers equation:

∂u
∂ t

+ u
∂u
∂x

= 0, (3.24)

which is a prototype for equations for which the solution candevelop disconti-
nuities (shock waves). As was mentioned above, as the solution of the advection
equation (2.1), the solution of Eq. (3.24) can be constructed by the method of char-
acteristics (see App. B). Suppose we have an initial value problem, i.e., a smooth
functionu(x,0) = u0(x), x ∈ R is given. In this case the coefficientsA, B andC are

A = u, B = 1, C = 0.

Equations (B.2-B.3) read

dt
ds

= 1⇔ |t(0) = 0| ⇔ t = s,

du
ds

= 0⇔ |u(0) = u0(x0)| ⇔ u(s,x0) = u0(x0),

dx
ds

= u ⇔ |x(0) = x0| ⇔ x = u0(x0)t + x0.

Hence the general solution of (3.24) takes the form

u(x,t) = u0(x−u0(x0)t,t). (3.25)

Eq. (3.25) is an implicit relation that determines the solution of the inviscid Burgers’
equation. Note that the characteristics are straight lines, but not all the lineas have
the same slope. It will be possible for the characteristics to intersect. If we write the
characteristics as

t =
u

u0(x0)
− x0

u0(x0)
,

one can see, that the slope 1/u0(x0) of the characteristics depends on the pointx0

and on the initial functionu0. For inviscid Burgers’ equation (3.24), the timeTc

at which the characteristics cross and a shock forms, the ”breaking” time, can be
determined exactly as

Tc =
−1

min{ux(x,0)}
This relation can be used if Eq. (3.24) has smooth initial data (so that it is differen-
tiable). From the formula forTc, we can see that the solution will break and a shock



will form if ux(x,0) is negative at some point. From numerical point of view it is
convenient to rewrite the Burgers’ equation as

∂u
∂ t

+
1
2

∂
∂x

(u2) = 0 (3.26)

Equation (3.26) describes a one-dimensional conservationlaw (2.13) withF = 1
2u2

and can be solve, e.g., with the upwind method (2.4) or with the Lax-Wendroff
method (2.14).

Space interval L=10
Initial condition u0(x) = exp(−(x−3)2)
Space discretization step △x = 0.05
Time discretization step △t = 0.05
Amount of time steps T = 36

Fig. 3.1 Characteristics
curves for the inviscid Burg-
ers’ equation (3.24)
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Fig. 3.2 Numerical solu-
tion of the inviscid Burgers’
equation (3.24)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

u(
x,

t)



3.4.0.1 The Riemann Problem

A Riemann problem, named afterBernhard Riemann, consists of a conservation law,
e.g., Eq. (3.24) together with a piecewise constant data having a single discontinuity,
i.e.,

u(x,0) = u0(x) =

{

ul, x < a;

ur, x ≥ a.
(3.27)

The form of the solution depends on the relation betweenul andur.
• ul > ur: The unique weak solution (see Fig. 3.2 (a)) is

u(x,0) = u0(x) =

{

ul, x < a + ct;

ur, x ≥ a + ct
(3.28)

with theshock velocity

c =
1
2
(ul + ur).

Note, that in this case the characteristics in each of the region whereu is constatnt
go into the shock as time advances (see Fig. 3.3 (b) ).

Space interval L=10
Initial condition ul = 0.8, ur = 0.2
Space discretization step △x = 0.05
Time discretization step △t = 0.05
Amount of time steps T = 100

The initial condition is:

u(x,0) = u0(x) =

{

0.8, x < 5;

0.2, x ≥ 5.
(3.29)

• ul < ur: In this case there are infinitely many weak solutions. One ofthem
is again (3.28) with the same velocity (see Fig. 3.4 (a)). Note that in this case the
characteristicsgo out of the shock (Fig. 3.4 (b)) and the solution is not stable to
perturbations.
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Fig. 3.3 a) Numerical solution of the inviscid Burgers’ equation (3.24) for the Riemann problem
for ul < ur. b) Characterics of Eq. (3.24) with initial conditions (3.29). The red line indicates the
curvex = a+ ct.
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Fig. 3.4 a) Numerical solution of the inviscid Burgers’ equation (??) for the Riemann problem for
ul < ur. b) Characterics of the inviscid Burgers’ equation with initial conditions (??). The red line
indicates the curvex = a+ ct.


